各种距离

reference:http://blog.csdn.net/shiwei408/article/details/7602324

Mahalanobis距离(马氏距离)的“哲学”解释
http://blog.csdn.net/jmy5945hh/article/details/20536929

马氏距离

[m,n] = size(data);  %  m代表维数;n代表数列矩阵点的个数
Dis = ones(m,n);    %返回元素都为1的m*n矩阵
Cov = cov(data);    %求矩阵的协方差
for i=1:m
    for j=1:n
        D(i,j)=sqrt((data(i,:)-data(j,:))*inv(Cov)*(data(i,:)-data(j,:))');  %mahal距离公式
    end
end

http://blog.csdn.net/u010536377/article/details/50487517

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值