车间调度
文章平均质量分 89
程序猿鑫
这个作者很懒,什么都没留下…
展开
-
基于改进的离散PSO算法的FJSP的研究(Python代码实现)
提出的算法采用机器负荷平衡机制初始化粒子种群,在粒子的更新过程中引入了3个操作算子来更新粒子的工序排序部分和机器分配部分,这3个算子分别为基于工序排序或机器分配的变异、与个体最优位置之间进行工序先后顺序保留的交叉(POX)操作、与全局最优位置进行随机点保存的交叉(RPX)操作。# print("第" + str(iter + 1) + '次循环的最优fitness:', Decode.decode(Pg, job_op_num, p_table, 'decode',None))# #随机选择的染色体。原创 2023-06-18 21:19:21 · 311 阅读 · 0 评论 -
基于多动作深度强化学习的柔性车间调度研究(Matlab代码实现)
通常,RL 代理根据以下行为与环境交互:代理首先接收状态st并选择一个操作一个t根据每个时间步的状态,然后获得奖励rt并转移到下一个州st+1.在 RL 的设置中,操作一个t从操作空间中选择一个.然而,本文用作业操作动作空间和机器动作空间构造了FJSP的分层多动作空间,这意味着RL的一般设置不能应用于FJSP。精确的方法,如数学规划,在整个解空间中寻找最优解,但由于它们的NP硬度,这些方法很难在合理的时间内解决大规模的调度问题(Li,Pan,&Liang,2010)。4 Python代码实现。原创 2023-06-14 20:35:15 · 528 阅读 · 1 评论 -
基于遗传算法的柔性生产调度研究(Matlab代码实现)
ylabel('机器号','FontName','微软雅黑','Color','b','FontSize',10,'Rotation',90)xlabel('加工时间','FontName','微软雅黑','Color','b','FontSize',10)color=rand(length(job),3);原创 2023-06-13 20:05:01 · 1000 阅读 · 0 评论 -
基于蚂蚁优化算法的柔性车间调度研究(Python代码实现)
首先,为了解决当工艺柔性复杂度较高时,现有描述方法存在的规模过大和组合爆炸等问题,提出了一种新的四元组数学描述方法,较好的描述了具有机器柔性的工艺路径柔性的工件。self.Ant_Machine_Map=np.ones((O_num,M_num),dtype=float) #第二阶段:机器选择蚂蚁地图。self.Ant_Map=np.ones((J_num,O_num),dtype=float) #第一阶段:工序排序蚂蚁地图。self.J_num=J_num #工件总类。原创 2023-02-28 19:56:33 · 823 阅读 · 1 评论 -
基于遗传算法的柔性生产调度研究(Matlab代码实现)
ylabel('机器号','FontName','微软雅黑','Color','b','FontSize',10,'Rotation',90)xlabel('加工时间','FontName','微软雅黑','Color','b','FontSize',10)%输入机器开始时间,结束时间,最大完工时间。原创 2023-02-25 12:10:15 · 327 阅读 · 0 评论