数据结构篇(并查集)poj1182

动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是"1 X Y",表示X和Y是同类。
第二种说法是"2 X Y",表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。
Input
第一行是两个整数N和K,以一个空格分隔。
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
Output
只有一个整数,表示假话的数目。
Sample Input
100 7
1 101 1 
2 1 2
2 2 3 
2 3 3 
1 1 3 
2 3 1 
1 5 5
Sample Output
3

1.p[x]表示x根结点。r[x]表示p[x]与x关系。r[x]=0 表示p[x]与x同类;1表示p[x]吃x;2表示x吃p[x]。
2.怎样划分一个集合呢?
  注意,这里不是根据x与p[x]是否是同类来划分。而是根据“x与p[x]能否确定两者之间关系”来划分,若能确定x与p[x]关系,则它们同属一个集合
3.怎样判断一句话是不是假话?
  假设已读入D ,X ,Y ,先利用findset()函数得到X,Y所在集合代表元素fx,fy,若它们在同一集合(即fx==fy)则可以判断这句话真伪:
        若 D==1 而 r[X]!=r[Y] 则此话为假.(D==1 表示X与Y为同类,而从r[X]!=r[Y]可以推出 X 与 Y 不同类.矛盾.)
        若 D==2 而 r[X]==r[Y](X与Y为同类)或者r[X]==(r[Y]+1)%3(Y吃X)则此话为假。
4.上个问题中r[X]==(r[Y]+1)%3这个式子怎样推来?
      假设有Y吃X,那么r[X]和r[Y]值是怎样?
        我们来列举一下: 
		           r[X]=0&&r[Y]=2 
                           r[X]=1&&r[Y]=0
                           r[X]=2&&r[Y]=1
          稍微观察一下就知道r[X]=(r[Y]+1)%3;
      事实上,对于上个问题有更一般判断方法:
           若(r[Y]-r[X]+3)%3!=D-1 ,则此话为假.
5.其他注意事项:
       在Union(d,x,y)过程中若将S(fy)合并到S(fx)上,则相应r[fy]必须更新为fy相对于fx关系。怎样得到更新关系式?
       r[fy]=(r[x]-r[y]+d+3)%3;

//太巧妙了,需要去仔细理解....
#include <iostream>
#include <string>
#include <cmath>
#include <cstdio>
using namespace std;
int father[50009];
int rank[50009];
int Find(int x)
{
    if(x!=father[x])
    {
        int temp=father[x];//先记录原先父节点
        father[x]=Find(father[x]);
        rank[x]=(rank[x]+rank[temp])%3;
    }
    return father[x];
}
void Union(int a,int b,int k)
{
    int x=Find(a);
    int y=Find(b);
    father[x]=y;
    rank[x]=(rank[b]-rank[a]+3+k)%3;
}
int main()
{
    int n,m;
   scanf("%d%d",&n,&m);

        int i,j,k,a,b,x,y,count=0;
        for(i=1; i<=n; i++)
        {
            father[i]=i;
            rank[i]=0;//先初始化自己和自己是同类
        }
        while(m--)
        {
            scanf("%d%d%d",&k,&a,&b);
            if(a>n||b>n)
            {
                count++;
                continue;
            }
            else if(k==2&&a==b)
            {
                count++;
                continue;
            }
            x=Find(a);
            y=Find(b);
            if(x==y)
            {
                if((rank[a]-rank[b]+3)%3!=k-1)
                {
                    count++;
                }
            }
            else//如果不同集合,就合并,因为这句话一定是真的
            {
                Union(a,b,k-1);
            }
        }
        printf("%d\n",count);
        //
        //return 0;
}


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页