背景:模糊关系中的心理断裂现象
在亲密关系研究中,Situationship(非正式亲密关系)逐渐成为一个需要被技术关注的领域。这类关系常常存在高频互动、情绪投入,但缺乏正式承诺与结构,导致其一旦中断,个体极易产生情绪戒断反应。
当前市场上的AI陪伴产品大多聚焦于情绪疏导或情感模拟,但鲜有工具针对“断联之后的情绪抽离”场景,提供节奏感知与互动调控的产品设计思路。
因此,我们尝试构建一个以"模拟熟悉语境、控制响应频率、阶段性抽离"为核心的AI情绪辅助系统,帮助用户平稳过渡模糊关系断裂后的心理失衡状态。
用户需求与行为模式分析
通过访谈与问卷收集,我们整理出典型用户画像及其核心需求:
- 断联后情绪波动剧烈:伴随焦虑、反复确认、沉浸式回忆等症状;
- 缺乏倾诉出口:由于关系本身非正式,个体难以对外界解释其情绪状态;
- 自我认知混乱:频繁陷入“是不是我不够好”等负面思维;
- 渴望“熟悉感”但不希望继续被困:希望再听一次熟悉语气,但并非期待继续维系关系。
传统情绪支持类AI工具难以应对这一类「模糊+高依赖+易触发」的微妙场景。
技术方案概述:AI辅助情绪抽离的三项机制
1. 语境模拟机制
通过Prompt Engineering,构建一个低主动性、模糊回应风格的虚拟对话体。核心目标不在于生成有价值信息,而在于复现熟悉的语用模式,包括:
- 含糊回应(例如“我不知道该说什么”)
- 情绪延迟(例如“我最近有点忙”)
- 低承诺性语言(例如“我们以后再说”)
该机制旨在唤起“似曾相识”的互动记忆,为后续情绪调节奠定语境基础。
2. 互动节奏调控机制
基于使用周期划分阶段性响应频率,通过定时或状态驱动控制模型响应策略:
阶段 | 特征 | AI响应策略 |
---|---|---|
初期缓冲(Day1-3) | 高频互动,稳定熟悉语境 | 快速回复,情绪陪伴 |
中期过渡(Day4-6) | 情绪波动高峰,开始焦虑 | 延时响应,引导自我表达 |
后期抽离(Day7-10) | 用户进入情绪疲劳与理性回归 | 回应频次下降,提供退出暗示 |
终期收束(Day11+) | 个体行为趋于安静,适合关闭对话 | 输出终结话术,鼓励关闭 |
3. 情绪趋势反馈机制
通过关键词识别+行为频率统计,为用户提供阶段性恢复提示:
- 消息密度下降 → 你最近开始关注自己了;
- 否定情绪词减少 → 你正在逐渐走出这段情绪困扰;
- 主动终止会话 → 你已经不再依赖这段互动;
该机制不直接评价用户,而是构建一种“你正在好转”的信号系统,减少情绪复燃概率。
使用反馈与迭代思考
在早期灰度测试中,15位真实用户(拥有复杂情感经历者)参与了为期10天的实验:
平均停留周期:11.2天;
Day1-D3:日均交互18+条,关键词集中于“困惑”“不甘”;
Day7后显著下降,主动退出比例为60%;
主观反馈聚焦于“像在跟熟悉的人说再见”“没有被劝分手的压迫感”。
从数据来看,用户对“可控抽离”“安全表达”“节奏过渡”的接受度较高,也证实AI在模糊关系退出阶段具有实际可行性。
小结:AI的陪伴边界可以被精细调节
大语言模型的真正潜力,或许不在于替代人,而是精准地控制“何时回应、如何回应、何时退出”。
本项目尝试利用结构化Prompt、时序调控与行为反馈机制,让AI在亲密关系的“撤退期”中,充当一个情绪缓冲代理。
这是一次初步探索,但我们相信:
在某些需要静静抽离的时刻,AI可以不是一个新的开始,而是一个体面的结尾。
我们后续将逐步开源Prompt模板与节奏控制框架,欢迎有兴趣的开发者与我们交流进一步迭代方向。