對隨機變數做線性變換後的期望值和協方差
假設 X , b ∈ R n , A ∈ R m × n \textbf{X},b \in \R^n, A \in R^{m \times n} X,b∈Rn,A∈Rm×n,那麼使用 A , b A,b A,b對 X \textbf{X} X做線性變換後,其期望值如下:
E
[
A
X
]
=
A
E
[
X
]
\operatorname{E}[A\textbf{X}] =A \operatorname{E}[\textbf{X}]
E[AX]=AE[X]
E
[
X
+
b
]
=
E
[
X
]
+
b
E
是線性算子
\begin{aligned} \operatorname{E}[\textbf{X}+b] = \operatorname{E}[\textbf{X}]+b && \operatorname{E}\text{是線性算子}\end{aligned}
E[X+b]=E[X]+bE是線性算子
參考Covariance of a random vector after a linear transformation,對隨機變數做線性變換後,其共變異數如下:
Cov ( A X ) = E [ ( A X − E [ A X ] ) ( A X − E [ A X ] ) T ] = E [ ( A X − A E [ X ] ) ( A X − A E [ X ] ) T ] = E [ A ( X − E [ X ] ) ( X − E [ X ] ) T A T ] = A E [ ( X − E [ X ] ) ( X − E [ X ] ) T ] A T = A Cov ( X ) A T \begin{aligned}\operatorname{Cov}(A\textbf{X}) &= \operatorname{E}[(A\textbf{X}-\operatorname{E}[A\textbf{X}])(A\textbf{X}-\operatorname{E}[A\textbf{X}])^T] \\&= \operatorname{E}[(A\textbf{X}-A\operatorname{E}[\textbf{X}])(A\textbf{X}-A\operatorname{E}[\textbf{X}])^T] \\&= \operatorname{E}[A(\textbf{X}-\operatorname{E}[\textbf{X}])(\textbf{X}-\operatorname{E}[\textbf{X}])^TA^T] \\&= A\operatorname{E}[(\textbf{X}-\operatorname{E}[\textbf{X}])(\textbf{X}-\operatorname{E}[\textbf{X}])^T]A^T \\ &= A\operatorname{Cov}(\textbf{X})A^T\end{aligned} Cov(AX)=E[(AX−E[AX])(AX−E[AX])T]=E[(AX−AE[X])(AX−AE[X])T]=E[A(X−E[X])(X−E[X])TAT]=AE[(X−E[X])(X−E[X])T]AT=ACov(X)AT
Cov ( X + b ) = E [ ( ( X + b ) − E [ X + b ] ) ( ( X + b ) − E [ X + b ] ) T ] = E [ ( ( X + b ) − ( E [ X ] + b ) ) ( ( X + b ) − ( E [ X ] + b ) ) T ] = E [ ( X − E [ X ] ) ( X − E [ X ] ) T ] = Cov ( X ) \begin{aligned}\operatorname{Cov}(\textbf{X}+b) &= \operatorname{E}[((\textbf{X}+b)-\operatorname{E}[\textbf{X}+b])((\textbf{X}+b)-\operatorname{E}[\textbf{X}+b])^T] \\&= \operatorname{E}[((\textbf{X}+b)-(\operatorname{E}[\textbf{X}]+b))((\textbf{X}+b)-(\operatorname{E}[\textbf{X}]+b))^T] \\&= \operatorname{E}[(\textbf{X}-\operatorname{E}[\textbf{X}])(\textbf{X}-\operatorname{E}[\textbf{X}])^T] \\&=\operatorname{Cov}(\textbf{X})\end{aligned} Cov(X+b)=E[((X+b)−E[X+b])((X+b)−E[X+b])T]=E[((X+b)−(E[X]+b))((X+b)−(E[X]+b))T]=E[(X−E[X])(X−E[X])T]=Cov(X)
其它參考連結:
Linear Transformation of Gaussian Random Variable
Linear transformations and Gaussian random vectors