兩獨立隨機變數之和的特徵函數

兩獨立隨機變數之和的特徵函數

參考機率論 特性函數(1) - Properties,特徵函數(characteristic function)的定義為: φ X ( t ) = E ⁡ ( e i t ( X ) ) \varphi_{X}(t)=\operatorname{E}\left(e^{it(X)}\right) φX(t)=E(eit(X))

φ X + Y ( t ) = E ⁡ ( e i t ( X + Y ) ) 套用特徵函數的定義 = E ⁡ ( e i t ( X ) ) E ⁡ ( e i t ( Y ) ) 假設有兩獨立的隨機變數 X , Y ,則 E ⁡ ( X Y ) = E ⁡ ( X ) E ⁡ ( Y ) = φ X ( t ) φ Y ( t ) 套用特徵函數的定義 \begin{aligned} \varphi_{X+Y}(t)&=\operatorname{E}\left(e^{it(X+Y)}\right) && \text{套用特徵函數的定義} \\&= \operatorname{E}\left(e^{it(X)}\right)\operatorname{E}\left(e^{it(Y)}\right) && \text{假設有兩獨立的隨機變數}X,Y\text{,則} \operatorname{E}(XY)= \operatorname{E}(X) \operatorname{E}(Y) \\&= \varphi_X(t) \varphi_Y(t) && \text{套用特徵函數的定義}\end{aligned} φX+Y(t)=E(eit(X+Y))=E(eit(X))E(eit(Y))=φX(t)φY(t)套用特徵函數的定義假設有兩獨立的隨機變數X,Y,E(XY)=E(X)E(Y)套用特徵函數的定義

其中第二個等號可以參考兩隨機變數乘積的期望值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值