兩獨立隨機變數之和的特徵函數
參考機率論 特性函數(1) - Properties,特徵函數(characteristic function)的定義為: φ X ( t ) = E ( e i t ( X ) ) \varphi_{X}(t)=\operatorname{E}\left(e^{it(X)}\right) φX(t)=E(eit(X))。
φ X + Y ( t ) = E ( e i t ( X + Y ) ) 套用特徵函數的定義 = E ( e i t ( X ) ) E ( e i t ( Y ) ) 假設有兩獨立的隨機變數 X , Y ,則 E ( X Y ) = E ( X ) E ( Y ) = φ X ( t ) φ Y ( t ) 套用特徵函數的定義 \begin{aligned} \varphi_{X+Y}(t)&=\operatorname{E}\left(e^{it(X+Y)}\right) && \text{套用特徵函數的定義} \\&= \operatorname{E}\left(e^{it(X)}\right)\operatorname{E}\left(e^{it(Y)}\right) && \text{假設有兩獨立的隨機變數}X,Y\text{,則} \operatorname{E}(XY)= \operatorname{E}(X) \operatorname{E}(Y) \\&= \varphi_X(t) \varphi_Y(t) && \text{套用特徵函數的定義}\end{aligned} φX+Y(t)=E(eit(X+Y))=E(eit(X))E(eit(Y))=φX(t)φY(t)套用特徵函數的定義假設有兩獨立的隨機變數X,Y,則E(XY)=E(X)E(Y)套用特徵函數的定義
其中第二個等號可以參考兩隨機變數乘積的期望值。