【吴恩达深度学习编程作业】1.3浅层神经网络——单隐藏层的平面数据分类

第二次跟着 带有一个隐藏层的平面数据分类 把作业代码码了一遍,感觉思路更加清晰了。今天刚刚填报了国家保研系统中的基本信息,最近的学习状态很差,是时候沉下心来认真学习了。

main.py

# 搭建一个单隐藏层的神经网络

import numpy as np
import matplotlib.pyplot as plt
import sklearn      # 为数据挖掘和数据分析提供的简单高效的工具
import sklearn.datasets
import sklearn.linear_model
from Deep_Learning.testCases import *       # 提供一些测试示例来评估函数的正确性
from Deep_Learning.planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets    # 提供在本实例中使用的各种有用的功能

np.random.seed(1)   # 设置一个固定的随机种子,以保证接下来的步骤中我们的结果是一致的

# 加载和查看数据集
# 将一个花的图案的2类数据集加载到变量X和Y中
X, Y = load_planar_dataset()
# 可视化数据集
plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral)  # 绘制散点图
plt.show()

# 数据看起来是由红色(y=0)和蓝色(y=1)的数据点的组成的花朵,我们的目标是建立一个模型适应这些数据
# 我们已有X(一个numpy的矩阵,包含这些数据点的数值),Y:(一个numpy的向量,对应着的是X的标签【0|1】(红色:0,蓝色:1))

shape_X = X.shape
shape_Y = Y.shape
m = Y.shape[1]  # 训练集里面的数量
print("X的维度为:" + str(shape_X))
print("Y的维度为:" + str(shape_Y))
print("数据集里面的数据有:" + str(m))


# 训练数据集上的逻辑回归分类器
clf = sklearn.linear_model.LogisticRegressionCV()
clf.fit(X.T, Y.T)

# 绘制逻辑分类器的分类
plot_decision_boundary(lambda x: clf.predict(x), X, np.squeeze(Y))  # 绘制决策边界
plt.title("Logistic Regression")    # 图标题
LR_predictions = clf.predict(X.T)   # 预测结果
plt.show()
print("逻辑回归的准确性:%d" % float((np.dot(Y, LR_predictions)
      + np.dot(1 - Y, 1 - LR_predictions))
      / float(Y.size) * 100) + "%"
      + "(正确标记的数据点所占的百分比)")
# 准确性只有47%原因是数据集不是线性可分的,所以逻辑回归表现不佳,以下开始正式构建神经网络


# 定义神经网络的结构
def layer_sizes(X, Y):
    """
        :param X:   -输入数据集,维度为(输入的数量,训练/测试的数量)
        :param Y:   -标签,维度为(输出的数量,训练/测试数量)
        :return: n_x:    -输入层的数量
                 n_h:    -隐藏层的数量
                 n_y:    -输出层的数量
    """
    n_x = X.shape[0]    # 输入层的数量
    n_h = 4     # 隐藏层,设置为4
    n_y = Y.shape[0]    # 输出层
    return (n_x, n_h, n_y)

# 测试layer_sizes
print("========================测试layer_sizes===========================")
X_asses, Y_asses = layer_sizes_test_case()
(n_x, n_h, n_y) = layer_sizes(X_asses, Y_asses)
print("输入层的节点数量为:n_x = " + str(n_x))
print("隐藏层的节点数量为:n_h = " + str(n_h))
print("输出层的节点数量为:n_y = " + str(n_y))


# 初始化模型的参数
def initialize_parameters(n_x, n_h, n_y):
    """
    :param n_x:     -输入层节点的数量
    :param n_h:     -隐藏层节点的数量
    :param n_y:     -输出层节点的数量
    :return: parameters     -包含参数的字典
                W1  -权重矩阵,维度为(n_h, n_x)
                b1  -偏向量,维度为(n_h, 1)
                W2  -权重矩阵,维度为(n_y, n_h)
                b2  -偏向量,维度为(n_y, 1)
    """
    np.random.seed(2)   # 指定一个随机种子
    W1 = np.random.rand(n_h, n_x) * 0.01
    b1 = np.zeros(shape=(n_h, 1))
    W2 = np.random.rand(n_y, n_h) * 0.01
    b2 = np.zeros(shape=(n_y, 1))

    # 使用断言确保数据格式的正确性
    assert (W1.shape == (n_h, n_x))
    assert (b1.shape == (n_h, 1))
    assert (W2.shape == (n_y, n_h))
    assert (b2.shape == (n_y, 1))

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}

    return parameters

# 测试initialize_parameters
print("=====================测试initialize_parameters=========================")
n_x, n_h, n_y = initialize_parameters_test_case()
parameters = initialize_parameters(n_x, n_h, n_y)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))


# 实现前向传播
def forword_propagation(X, parameters):
    """
    :param X:   -维度为(n_x, m)的输入数据
    :param parameters:  -初始化函数(initialize_parameters)的输出
    :return: A2     -使用sigmoid函数计算的第二次激活后的数值
             cache  -包含“Z1”,“A1”,“Z2”,“A2”的字典类型变量
    """
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    # 前向传播计算A2
    Z1 = np.dot(W1, X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2, A1) + b2
    A2 = sigmoid(Z2)
    assert (A2.shape == (1, X.shape[1]))
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2
             }
    return (A2, cache)

# 测试forword_propagation
print("=======================测试forword_propagation=====================")
X_asses, parameters = forward_propagation_test_case()
A2, cache = forword_propagation(X_asses, parameters)
print(np.mean(cache["Z1"]), np.mean(cache["A1"]), np.mean(cache["Z2"]), np.mean(cache["A2"]))


# 计算损失
# 计算交叉熵损失
# logprobs = np.multiply(np.log(A2), Y)
# cost = -np.sum(logprobs)    # 不需要使用循环就可以直接计算
# 构建计算成本函数
def compute_cost(A2, Y, parameters):
    """
    :param A2:  -使用sigmoid函数计算的第二次激活后的数值
    :param Y:   -"True"标签向量,维度为(1,数量)
    :param parameters:  -一个包含W1,b1,W2,b2的字典类型的变量
    :return: cost   -交叉熵成本
    """
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]

    # 计算成本
    logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))
    np.seterr(divide='ignore', invalid='ignore')    # 忽略除以0的情况,消除警告
    cost = - np.sum(logprobs) / m
    cost = float(np.squeeze(cost))

    assert (isinstance(cost, float))

    return cost

# 测试compute_cost
print("========================测试compute_cost======================")
A2, Y_asses, parameters = compute_cost_test_case()
print("cost = " + str(compute_cost(A2, Y_asses, parameters)))


# 反向传播
def backward_propagation(parameters, cache, X, Y):
    """
    :param parameters:  -包含我们的参数的一个字典类型的变量
    :param cache:       -包含"Z1","A1","Z2","A2"的字典类型的变量
    :param X:   -输入数据,维度为(2,数量)
    :param Y:   -"True"标签向量,维度为(1,数量)
    :return:grads   -包含W和b的导数一个字典类型的变量
    """
    m = X.shape[1]

    W1 = parameters["W1"]
    W2 = parameters["W2"]
    A1 = cache["A1"]
    A2 = cache["A2"]

    dZ2 = A2 - Y
    dW2 = (1 / m) * np.dot(dZ2, A1.T)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
    dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))   # 激活函数为tanh,其导数为1-a^2
    dW1 = (1 / m) * np.dot(dZ1, X.T)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2}
    return grads

# 测试backward_propagation
print("=======================测试backward_propagation======================")
parameters, cache, X_asses, Y_asses = backward_propagation_test_case()
grads = backward_propagation(parameters, cache, X_asses, Y_asses)
print("dW1 = " + str(grads["dW1"]))
print("db1 = " + str(grads["db1"]))
print("dW2 = " + str(grads["dW2"]))
print("db2 = " + str(grads["db2"]))


# 更新参数
def update_parameters(parameters, grads, learning_rate=1.2):
    """
    使用梯度下降更新规则更新参数
    :param parameters:  -包含参数的字典类型的变量
    :param grads:   -包含导数值的字典类型的变量
    :param learning_rate:   -学习速率
    :return: parameters     -包含更新参数的字典类型的变量
    """
    W1, W2 = parameters["W1"], parameters["W2"]
    b1, b2 = parameters["b1"], parameters["b2"]

    dW1, dW2 = grads["dW1"], grads["dW2"]
    db1, db2 = grads["db1"], grads["db2"]

    W1 = W1 - learning_rate * dW1
    b1 = b1 - learning_rate * db1
    W2 = W2 - learning_rate * dW2
    b2 = b2 - learning_rate * db2

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}

    return parameters

# 测试update_parameters
print("======================测试update_parameters======================")
parameters, grads, = update_parameters_test_case()
parameters = update_parameters(parameters, grads)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))


# 将所有的函数整合到一个model中
def nn_model(X, Y, n_h, num_iterations, print_cost=False):
    """
    :param X:   -数据集,维度为(2,示例数)
    :param Y:   -标签,维度为(1,示例数)
    :param n_h:     -隐藏层的数量
    :param num_iterations:  -梯度下降循环中的迭代次数
    :param print_cost:  -如果为True,则每1000次迭代打印一次成本数值
    :return: parameters     -模型学习的参数,它们可以用来进行预测
    """
    np.random.seed(3)   # 指定随机种子
    n_x = layer_sizes(X, Y)[0]
    n_y = layer_sizes(X, Y)[2]

    parameters = initialize_parameters(n_x, n_h, n_y)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]

    for i in range(num_iterations):
        A2, cache = forword_propagation(X, parameters)
        cost = compute_cost(A2, Y, parameters)
        grads = backward_propagation(parameters, cache, X, Y)
        parameters = update_parameters(parameters, grads, learning_rate=1.2)

        if print_cost:
            if i % 1000 == 0:
                print("第", i, "次循环,成本为:" + str(cost))

    return parameters

# 测试nn_model
print("====================测试nn_model=======================")
X_asses, Y_asses = nn_model_test_case()
parameters = nn_model(X_asses, Y_asses, 4, num_iterations=10000, print_cost=False)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))


# 使用前向传播预测结果
def predict(parameters, X):
    """
    使用学习的参数,为X中的每一个示例预测一个类
    :param parameters:  -包含参数的字典类型的变量
    :param X:   -输入数据(n_x, m)
    :return: predictions    -模型预测的向量(红色:0|蓝色:1)
    """
    A2, cache = forword_propagation(X, parameters)
    predictions = np.round(A2)      # round函数近似取值
    return predictions

# 测试predict
print("=======================测试predict======================")
parameters, X_asses = predict_test_case()
predictions = predict(parameters, X_asses)
print("预测的平均值 = " + str(np.mean(predictions)))


# 正式运行
parameters = nn_model(X, Y, n_h=4, num_iterations=10000, print_cost=True)

# 绘制边界
plot_decision_boundary(lambda x: predict(parameters, x.T), X, np.squeeze(Y))
plt.title("Decision Boundary for hidden layer size " + str(4))

predictions = predict(parameters, X)
print('准确率:%d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')
plt.show()


# 更改隐藏层节点数量,以上测试中隐藏层节点数为4
plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50]    # 隐藏层数量
for i, n_h in enumerate(hidden_layer_sizes):

    plt.subplot(3, 3, i + 1)
    plt.title('Hidden Layer of size %d' % n_h)
    parameters = nn_model(X, Y, n_h, num_iterations=5000)
    plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
    predictions = predict(parameters, X)
    accuracy = float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100)
    print("隐藏层的节点数量:{},准确率{}%".format(n_h, accuracy))
plt.show()
# 较大的模型(具有更多隐藏单元)能够更好地适应训练集,直到最终的最大模型过度拟合数据。
# 最好的隐藏层大小似乎在n_h = 5附近,这里的值似乎很适合数据,而且不会引起过度拟合。

planar_utils.py

import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model

def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=np.squeeze(y), cmap=plt.cm.Spectral)


def sigmoid(x):
    """
        当x是一个非常小的负数时,exp(-x)会过大,导致溢出,下面进行优化:
        原式分子分母同乘exp(x)这个很小的数,可以防止数据溢出
    """
    # if x >= 0:
    #     s = 1.0 / (1 + np.exp(-x))
    # else:
    #     s = np.exp(x) / (1 + np.exp(x))
    s = 1 / (1 + np.exp(-x))
    return s

def load_planar_dataset():
    np.random.seed(1)
    m = 400 # number of examples
    N = int(m/2) # number of points per class
    D = 2 # dimensionality
    X = np.zeros((m,D)) # data matrix where each row is a single example
    Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
    a = 4 # maximum ray of the flower

    for j in range(2):
        ix = range(N*j,N*(j+1))
        t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
        r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
        X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
        Y[ix] = j

    X = X.T
    Y = Y.T

    return X, Y

def load_extra_datasets():  
    N = 200
    noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
    noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
    blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
    gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
    no_structure = np.random.rand(N, 2), np.random.rand(N, 2)

    return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure

testCases.py

#-*- coding: UTF-8 -*-
"""
# WANGZHE12
"""
import numpy as np

def layer_sizes_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(5, 3)
    Y_assess = np.random.randn(2, 3)
    return X_assess, Y_assess

def initialize_parameters_test_case():
    n_x, n_h, n_y = 2, 4, 1
    return n_x, n_h, n_y

def forward_propagation_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)

    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
        [-0.02136196,  0.01640271],
        [-0.01793436, -0.00841747],
        [ 0.00502881, -0.01245288]]),
     'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
     'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
     'b2': np.array([[ 0.]])}

    return X_assess, parameters

def compute_cost_test_case():
    np.random.seed(1)
    Y_assess = np.random.randn(1, 3)
    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
        [-0.02136196,  0.01640271],
        [-0.01793436, -0.00841747],
        [ 0.00502881, -0.01245288]]),
     'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
     'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
     'b2': np.array([[ 0.]])}

    a2 = (np.array([[ 0.5002307 ,  0.49985831,  0.50023963]]))

    return a2, Y_assess, parameters

def backward_propagation_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    Y_assess = np.random.randn(1, 3)
    parameters = {'W1': np.array([[-0.00416758, -0.00056267],
        [-0.02136196,  0.01640271],
        [-0.01793436, -0.00841747],
        [ 0.00502881, -0.01245288]]),
     'W2': np.array([[-0.01057952, -0.00909008,  0.00551454,  0.02292208]]),
     'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
     'b2': np.array([[ 0.]])}

    cache = {'A1': np.array([[-0.00616578,  0.0020626 ,  0.00349619],
         [-0.05225116,  0.02725659, -0.02646251],
         [-0.02009721,  0.0036869 ,  0.02883756],
         [ 0.02152675, -0.01385234,  0.02599885]]),
  'A2': np.array([[ 0.5002307 ,  0.49985831,  0.50023963]]),
  'Z1': np.array([[-0.00616586,  0.0020626 ,  0.0034962 ],
         [-0.05229879,  0.02726335, -0.02646869],
         [-0.02009991,  0.00368692,  0.02884556],
         [ 0.02153007, -0.01385322,  0.02600471]]),
  'Z2': np.array([[ 0.00092281, -0.00056678,  0.00095853]])}
    return parameters, cache, X_assess, Y_assess

def update_parameters_test_case():
    parameters = {'W1': np.array([[-0.00615039,  0.0169021 ],
        [-0.02311792,  0.03137121],
        [-0.0169217 , -0.01752545],
        [ 0.00935436, -0.05018221]]),
 'W2': np.array([[-0.0104319 , -0.04019007,  0.01607211,  0.04440255]]),
 'b1': np.array([[ -8.97523455e-07],
        [  8.15562092e-06],
        [  6.04810633e-07],
        [ -2.54560700e-06]]),
 'b2': np.array([[  9.14954378e-05]])}

    grads = {'dW1': np.array([[ 0.00023322, -0.00205423],
        [ 0.00082222, -0.00700776],
        [-0.00031831,  0.0028636 ],
        [-0.00092857,  0.00809933]]),
 'dW2': np.array([[ -1.75740039e-05,   3.70231337e-03,  -1.25683095e-03,
          -2.55715317e-03]]),
 'db1': np.array([[  1.05570087e-07],
        [ -3.81814487e-06],
        [ -1.90155145e-07],
        [  5.46467802e-07]]),
 'db2': np.array([[ -1.08923140e-05]])}
    return parameters, grads

def nn_model_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    Y_assess = np.random.randn(1, 3)
    return X_assess, Y_assess

def predict_test_case():
    np.random.seed(1)
    X_assess = np.random.randn(2, 3)
    parameters = {'W1': np.array([[-0.00615039,  0.0169021 ],
        [-0.02311792,  0.03137121],
        [-0.0169217 , -0.01752545],
        [ 0.00935436, -0.05018221]]),
     'W2': np.array([[-0.0104319 , -0.04019007,  0.01607211,  0.04440255]]),
     'b1': np.array([[ -8.97523455e-07],
        [  8.15562092e-06],
        [  6.04810633e-07],
        [ -2.54560700e-06]]),
     'b2': np.array([[  9.14954378e-05]])}
    return parameters, X_assess

运行结果

X的维度为:(2, 400)
Y的维度为:(1, 400)
数据集里面的数据有:400
F:\Python\lib\site-packages\sklearn\utils\validation.py:73: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
  return f(**kwargs)
逻辑回归的准确性:47%(正确标记的数据点所占的百分比)
========================测试layer_sizes===========================
输入层的节点数量为:n_x = 5
隐藏层的节点数量为:n_h = 4
输出层的节点数量为:n_y = 2
=====================测试initialize_parameters=========================
W1 = [[0.00435995 0.00025926]
 [0.00549662 0.00435322]
 [0.00420368 0.00330335]
 [0.00204649 0.00619271]]
b1 = [[0.]
 [0.]
 [0.]
 [0.]]
W2 = [[0.00299655 0.00266827 0.00621134 0.00529142]]
b2 = [[0.]]
=======================测试forword_propagation=====================
-0.0004997557777419913 -0.0004969633532317802 0.0004381874509591466 0.500109546852431
========================测试compute_cost======================
cost = 0.6929198937761266
=======================测试backward_propagation======================
dW1 = [[ 0.01018708 -0.00708701]
 [ 0.00873447 -0.0060768 ]
 [-0.00530847  0.00369379]
 [-0.02206365  0.01535126]]
db1 = [[-0.00069728]
 [-0.00060606]
 [ 0.000364  ]
 [ 0.00151207]]
dW2 = [[ 0.00363613  0.03153604  0.01162914 -0.01318316]]
db2 = [[0.06589489]]
======================测试update_parameters======================
W1 = [[-0.00643025  0.01936718]
 [-0.02410458  0.03978052]
 [-0.01653973 -0.02096177]
 [ 0.01046864 -0.05990141]]
b1 = [[-1.02420756e-06]
 [ 1.27373948e-05]
 [ 8.32996807e-07]
 [-3.20136836e-06]]
W2 = [[-0.01041081 -0.04463285  0.01758031  0.04747113]]
b2 = [[0.00010457]]
====================测试nn_model=======================
G:\Project\PYTHON\Demo01\Deep_Learning\planar_utils.py:33: RuntimeWarning: overflow encountered in exp
  s = 1 / (1 + np.exp(-x))
W1 = [[ 7.52965472 -1.24309301]
 [ 4.21291395 -5.31399817]
 [ 7.52966135 -1.2431499 ]
 [ 4.21397291 -5.31333161]]
b1 = [[-3.79468532]
 [-2.32838083]
 [-3.79485646]
 [-2.3283009 ]]
W2 = [[6006.88570125 6032.88338564 6007.41279754 6032.66790904]]
b2 = [[-53.17690741]]
=======================测试predict======================
预测的平均值 = 0.66666666666666660 次循环,成本为:0.69315866200548731000 次循环,成本为:0.2893077660730592000 次循环,成本为:0.27385955616865243000 次循环,成本为:0.2381157970617884000 次循环,成本为:0.228102059194962265000 次循环,成本为:0.223318086335651266000 次循环,成本为:0.2201929179281947000 次循环,成本为:0.217869641829136658000 次循环,成本为:0.216035671352426859000 次循环,成本为:0.21863707045894862
准确率:90%
隐藏层的节点数量:1,准确率67.5%
隐藏层的节点数量:2,准确率67.25%
隐藏层的节点数量:3,准确率90.75%
隐藏层的节点数量:4,准确率90.75%
隐藏层的节点数量:5,准确率91.25%
隐藏层的节点数量:20,准确率90.0%
隐藏层的节点数量:50,准确率91.0%

依次显示的图片

原始数据集:
原始数据集
简单逻辑回归分类:简单逻辑回归分类
四个隐藏层的神经网络分类结果:
四个隐藏层的神经网络分类
不同隐藏层的神经网络分类结果:
不同隐藏层的神经网络分类结果

目前仍然存在的问题:

  • sigmoid函数需要优化

RuntimeWarning: overflow encountered in exp s = 1 / (1 + np.exp(-x))

  • 代码存在警告,但可以正常运行

DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). return f(**kwargs)

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值