项目背景
SHEIN是于2008年8月上线的,一家专注于快时尚女装行业,以出口电商为主的跨境快时尚平台。主要针对的目标用户群体为18~35岁的年轻女性,此类用户以追求时尚美丽为目标,超越只满足衣服穿暖的基本生理需求层面,转而追求更高端的精神享受层面需求–更美、更时尚。SHEIN采取独立建站的形式,开辟海外市场,拥有自己独有的供应链体系,自行设计和生产服装,打造属于自己的品牌,目前SHEIN已是中国最大的快时尚跨境电商。
项目需求
当互联网红利逐渐消退,消费场景与用户需求随之转变,疲软的市场为快时尚行业敲响了警钟。2020年全球疫情的爆发,更是给跨境电商市场带来不小的冲击。而SHEIN作为中国最大的快时尚跨境电商平台,在“后疫时代”下又该如何“自救”?
本项目利用MySQL对SHEIN2016年8月至2018年3月的国内零售数据进行分析,从用户、产
品、地域等多个角度探索跨境快时尚行业出口转内销的可能性。
数据准备
数据获取
数据集来源于SHEIN国内市场2016年8月16日至2018年3月22日的线上零售数据。
数据理解
客户相关
customers.csv:用户注册表
字段名 | 字段描述 | 数据类型 |
---|---|---|
id | 用户ID | VARCHAR(15) |
full_name | 用户名称 | VARCHAR(20) |
created_at | 注册日期 | INT |
login_log.csv:访问记录表
字段名 | 字段描述 | 数据类型 |
---|---|---|
id | 标识ID | VARCHAR(5) |
customer_id | 用户ID | VARCHAR(15) |
logion_date | 访问日期 | DATE |
商品相关
products.csv:商品主表
字段名 | 字段描述 | 数据类型 |
---|---|---|
id | 产品ID | VARCHAR(15) |
title | 产品名称 | VARCHAR(50) |
product_type | 品类名称 | VARCHAR(10) |
created_at | 建档日期 | DATE |
published_at | 上架日期 | DATE |
products_skus.csv: 商品详情表
字段名 | 字段描述 | 数据类型 |
---|---|---|
id | 商品ID | VARCHAR(15) |
product_id | 产品ID | VARCHAR(15) |
product_style | 商品风格 | VARCHAR(50) |
sku | 商品名称 | VARCHAR(50) |
created_at | 上架日期 | DATE |
price | 单价 | DECIMAL(6,2) |
订单相关
orders.csv:订单主表
字段名 | 字段描述 | 数据类型 |
---|---|---|
id | 订单ID | VARCHAR(15) |
created_at | 下单日期 | DATE |
closed_at | 关闭日期 | DATE |
cancelled_at | 取消日期 | DATE |
customer_id | 用户ID | VARCHAR(15) |
country | 国家 | CHAR |
province | 省份 | VARCHAR(4) |
city | 城市 | VARCHAR(4) |
district | 区县 | VARCHAR(4) |
address | 地址 | VARCHAR(100) |
financial_status | 财务状态(paid已支付,refunded已退回,partially_refunded部分退回,pending待定,voided无效) | VARCHAR(20) |
fulfillment_status | 完成状态(fulfilled已完成,partial部分完成,restocked已退回) | VARCHAR(10) |
processed_at | 审核日期 | DATE |
total_price | 订单金额(包含服务费、进口税、用券金额等) | DECIMAL(6,2) |
shipping_rate | 运费 | DECIMAL(6,2) |
subtotal_price | 折扣后商品金额 | DECIMAL(6,2) |
total_discounts | 折扣金额 | DECIMAL(6,2) |
total_line_items_price | 商品金额 | DECIMAL(6,2) |
orders_items.csv:订单详情表
字段名 | 字段描述 | 数据类型 |
---|---|---|
id | 单品ID | VARCHAR(15) |
order_id | 订单ID | VARCHAR(15) |
product_style | 商品风格 | VARCHAR(50) |
variant_id | 商品ID | VARCHAR(15) |
sku | 商品名称 | VARCHAR(50) |
product_title | 产品名称 | VARCHAR(50) |
fulfillment_status | 完成状态(fulfilled已完成,partial部分完成) | VARCHAR(10) |
price | 单价 | DECIMAL(6,2) |
quantity | 数量 | INT |
regioninfo.csv:区域表
字段名 | 字段描述 | 数据类型 |
---|---|---|
regionid | 地址ID | VARCHAR(4) |
parentid | 父级ID | VARCHAR(4) |
regionname | 区域名称 | VARCHAR(20) |
regiontype | 区域类别(0国家/1省份/2城市/3区县) | CHAR |
数据清洗
建表导数
create database shein;
use shein;
-- 注册用户表customers----------------------------------------------
create table customers(
id varchar(15) primary key,
full_name varchar(30),
created_at int
);
load data infile "C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/customers.csv"
into table customers
fields terminated by ','
ignore 1 lines;
select * from customers limit 10;
select count(*) from customers;-- 44661
-- 访问记录表login_log---------------------------------------
create table login_log(
id varchar(5) primary key,
customer_id varchar(15),
login_date date
);
load data infile "C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/login_log.csv"
into table login_log
fields terminated by ','
ignore 1 lines;
select * from login_log limit 10;
select count(*) from login_log;-- 915
-- 订单主表orders--------------------------------------------
create table orders(
id varchar(15) primary key,
created_at date,
closed_at date,
cancelled_at date,
customer_id varchar(15),
country char,
province varchar(4),
city varchar(4),
district varchar(4),
address varchar(100),
financial_status varchar(20),
fulfillment_status varchar(10),
processed_at date,
total_price decimal(6,2),
shipping_rate decimal(6,2),
subtotal_price decimal(6,2),
total_discounts decimal(6,2),
total_line_items_price decimal(6,2)
);
load data infile "C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/orders.csv"
into table orders
fields terminated by ','
ignore 1 lines;
select * from orders limit 10;
select count(*) from orders;-- 21358
-- 订单详情表orders_items------------------------------------
create table orders_items(
id varchar(15) primary key,
order_id varchar(15),
product_style varchar(50),
variant_id varchar(15),
sku varchar(50),
product_title varchar(50),
fulfillment_status varchar(10),
price decimal(6,2),
quantity int
);
load data infile "C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/orders_items.csv"
into table orders_items
fields terminated by ','
ignore 1 lines;
select * from orders_items limit 10;
select count(*) from orders_items;-- 36826
-- 商品主表products-----------------------------------------------
create table products(
id varchar(15) primary key,
title varchar(50),
product_type varchar(15),
created_at date,
published_at date
);
load data infile "C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/products.csv"
into table products
fields terminated by ','
ignore 1 lines;
select * from products limit 10;
select count(*) from products;-- 247
-- 商品详情表products_skus-----------------------------------
create table products_skus(
id varchar(15) primary key,
product_id varchar(15),
product_style varchar(50),
sku varchar(50),
created_at date,
price decimal(6,2)
);
load data infile "C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/products_skus.csv"
into table products_skus
fields terminated by ','
ignore 1 lines;
select * from products_skus limit 10;
select count(*) from products_skus;-- 1356
-- 区域表regioninfo------------------------------------------------
create table regioninfo(
regionid varchar(4) primary key,
parentid varchar(4),
regionname varchar(20),
regiontype char
);
load data infile "C:/ProgramData/MySQL/MySQL Server 8.0/Uploads/regioninfo.csv"
into table regioninfo
fields terminated by ','
ignore 1 lines;
select * from regioninfo limit 10;
select count(*) from regioninfo;-- 3415
字段处理
需要将时间戳类型的字段转换为日期格式。
数据分析
地域销售概况
SHEIN国内市场主要集中在华南、华中、华东地区,其中广东地区市场份额占比最高,其次为湖南、湖北、浙江等地。
用户留存分析
进入互联网下半场后的人口红利逐渐消失,很多企业面临着拉新困难的问题。
虽然很多公司有营收指标进行数据监测,但营收往往是后置的。
用户来了就走,走了就不再回来,这等于前期的一系列产品策略、运营成本、人力时间都白白浪费掉了。
现阶段公域流量(百度竞价、直播带货等)越来越贵,部分行业的部分企业已经出现获客成本高于客户收益的情况,私域流量(社群、朋友圈等)的产品忠诚度很低,更多的是价格敏感型群体。因此企业在寻找更优质的拉新渠道的同时,需要将重心慢慢转移到老用户的运营上,提高用户留存,用最小的成本使得用户价值最大化。
用户留存和留存率
用户在某段时间内开始使用某一款APP,经过一段时间后,仍然继续使用该APP的用户,被认作是留存用户。
这部分用户占当时新增用户的比例即是留存率,会按照每隔1单位时间(日、周、月)来进行统计。
- 次日留存率:(第一天新增的用户,在注册的第2天还登录的用户数)/第一天新增总用户数;
- 三日留存率:(第一天新增的用户,在注册的第3天还登录的用户数)/第一天新增总用户数;
- 七日留存率:(第一天新增的用户,在注册的第7天还登录的用户数)/第一天新增总用户数;
留存率是验证用户粘性的关键指标,衡量用户的粘性和忠诚度。
根据Facebook的40-20-10法则,次日留存、3日留存、7日留存能达到40%、20%、10%即为较佳水平。
如何提高用户留存
运营用户像经营餐馆,菜好吃、服务到位、用餐环境舒适、价格便宜等众多因素都可能是触发用户下次光顾的关键点。所以用户留存是判断产品是否有价值的标准,只有有价值的产品用户才愿意继续使用。
用户激励体系
用户签到、用户积分体系、用户等级体系是各大APP为了提升用户留存率必用的手段。这些手段对于培养用户使用习惯,提升用户粘性忠实度,增加用户活跃,带动用户价值转化有重要意义。
常用的签到工具有几种类型:
- 日历签到、夺宝签到、养成类签到、任务类签到;
- 用户积分体系,积分商城、福利中心,是开展用户积分活动常用的手段;
- 用户等级、用户身份、用户特权、用户勋章等对于提升用户留存也有帮助。
签到功能是用来换取积分的主要手段,用户进入该页面即为签到一次,连续七天签到会得到额外的积分,特定的日期也会有奖励。
获取积分的方式有:上传作品至搭配比赛、观看直播达一定时长、发表动态、拍照上传至评论等。不过目前获取积分的形式还不是很多样化,可以考虑增加在某页面停留时长、将商品转发给社交好友等任务,增加漏斗转化的基数。
运营消息推送
推送的方式有多种,包括但不仅限于APP消息推送、短信推送、邮件推送、公众号推送等。在保证用户体验的同时,通过push最大限度地提升商业价值。一天最多push用户6条内容,超过6条则容易带来不好的用户体验,严重会导致用户关掉推送开关。
复购分析
复购也叫重复购买,指用户对产品或者服务的重复消费。复购率越高,说明消费者对品牌的忠诚度就越高。
很多产品吸引用户下单购买的策略都是通过让利促销的方式,发现用户好久没来了,为了激活用户会再次推送优惠券或促销活动,可能又会产生第二次购买。但这种方式会造成一个烧钱也尴尬的状况:一方面,拉新成本高居不下,另一方面,新用户大多都是奔着“薅羊毛”来的,这些用户大多只完成2次购买行为:第一次购买一般是由优惠券或补贴驱动,第二次购买还是由补贴驱动。纯优惠券和红包驱动下的用户价值是不持续的,甚至会让人陷入虚假繁荣。当促销手段用的太老套或者过多时,用户对促销手段也会渐渐“无感”。想要提升客户价值,需要更为有效的办法——提升复购。
新用户的盈利毕竟是有限的,只有用户的多次复购,才能够让企业获得长久的盈利和存活,因为复购用户的成本更低。
根据中国电子商务研究中心提供的公开数据统计情况:
- 2015年电商获取新用户(站外拉新)的成本价已经达到每人200~400元,商家站内拉新成本为每人30~80元。
- 电商行业商家获得新用户的成本是维护老用户的5~10倍。
- 用户流失率每降低5%,其利润增加的就是25%~85%。
- 一个满意的用户会带来8笔潜在的生意,一个不满意的用户则可能影响25个人的购买意愿。
- 如果忽略对老用户的关注,大多数企业会在5年内流失一半的用户。
这些数据均表明,要保持业绩的持续增长,必须一手抓拉新,一手抓留存和复购。
复购与回购
复购是一个单位时间内的多次购买,回购是在下一个单位时间内仍然购买。
复购率:单位时间内,购买两次及以上的用户数/购买的总用户数。例如:当月共有10个用户购买了商品,其中4个用户购买2次及以上,则用户复购率为40%。
回购率:单位时间内,有购买行为的老用户数/购买的总用户数。例如:当月共有10个用户购买了商品,其中4个用户在当月前曾经购买过,则用户回购率为40%。
提升复购率的策略
通过优化产品体验,提升用户复购
用户体验(包括界面UI、交互、内容、活动等)是最能吸引用户复购的关键因素。
SHEIN的Gals社区模块集中了很多的内容活动,页面顶部有“OUTFIT”(搭配)、“Gals”(模特)、“Media”(多媒体)、签到、购物车五个入口。页面中部默认展示正在进行中的搭配比赛,用户可以参加比赛并上传搭配图片,通过点赞数量进行排名,优胜者会得到积分奖励,积分可在购物时抵扣一定量的金额;页面底部是风格相似的其他用户动态。
通过活动刺激,提升用户复购
提升用户复购的方式多种多样,活动是最立竿见影的方式之一。比如裂变活动、砍价活动、助力活动等,快速检验活动效果,不断优化流程。
进入“OUTFIT”页面顶部可查看以往活动,页面顶部会显示目前正在进行的活动、活动截止倒计时、活动参与人数,中部是各活动入口,往下滑动是挑选以往各活动的优质图片。
通过精准推荐,提升用户复购
用户标签偏好设置,通常在新用户首次下载APP后,以开屏弹框的形式出现。用户标签较多关于用户的内容偏好、风格偏好等,用户可针对自身喜好选择。而活跃用户的标签偏好通常出现在新版本更新时,同样以开屏弹框提示让用户完善偏好信息。系统记录越多的用户偏好和行为数据,算法推荐的内容就越精准。