【Ybtoj 第19章例5】金明的预算方案【背包问题】

66 篇文章 1 订阅

在这里插入图片描述


解题思路

这是一道经典的有依赖性背包问题。
先处理出主件和附件的价值和重量,然后就是01背包了:

  1. 只买主件
  2. 买主件+附件1
  3. 买主件+附件2
  4. 买主件+附件1+附件2

代码

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;

int n,m,v[32010],p[32010],q[32010],f[32020],b[320010][3];

int main() {
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++)
	{
		scanf("%d%d%d",&v[i],&p[i],&q[i]);
		p[i]=p[i]*v[i];
		if(b[q[i]][1])
			b[q[i]][2]=i;
		else b[q[i]][1]=i;
	}
	for(int i=1;i<=m;i++)
	{
		if(!q[i])
		{
			for(int j=n;j>=v[i];j--)
			{
				f[j]=max(f[j],f[j-v[i]]+p[i]);//情况1
				if(j>=v[i]+v[b[i][1]])//情况2
				f[j]=max(f[j],f[j-v[i]-v[b[i][1]]]+p[i]+p[b[i][1]]);
				if(j>=v[i]+v[b[i][2]])//情况3
				f[j]=max(f[j],f[j-v[i]-v[b[i][2]]]+p[i]+p[b[i][2]]);
				if(j>=v[i]+v[b[i][1]]+v[b[i][2]])//情况4
				f[j]=max(f[j],f[j-v[i]-v[b[i][1]]-v[b[i][2]]]+p[i]+p[b[i][1]]+p[b[i][2]]);
			}
		}
	}
	printf("%d",f[n]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值