【洛谷 P3389】 高斯消元法【模板】【数论】

119 篇文章 0 订阅
102 篇文章 0 订阅
本文介绍了高斯消元法的基本思路和步骤,通过实例展示了如何通过行变换将矩阵转化为阶梯形矩阵,进而求解线性方程组。在处理过程中,选择绝对值最大的系数作为主元,以减小计算误差。最终,通过C++代码实现了高斯消元法的算法。
摘要由CSDN通过智能技术生成

在这里插入图片描述

在这里插入图片描述


解题思路
在这里插入图片描述
在这里插入图片描述
所以第i个未知数(在第i列)最后只能在第i行有系数,其他行第i列的系数都被消成了0。

在这里要注意一下,我们往往是将第i个未知数系数绝对值最大的方程移到第i行,这样就可以减小误差。(证明不会啊哈哈哈)

所以我们先将矩阵变成这样:
在这里插入图片描述
接着在处理第 i i i个未知数时,我们以第i个式子作为主元,用主元式去消其他式子第i列的系数并更新 i + 1 i+1 i+1~ n + 1 n+1 n+1列其他未知数的系数。( 1 1 1~ i − 1 i-1 i1的已经被消成 0 0 0了,第 n + 1 n+1 n+1列的是每个等式右边的答案)

那怎么消呢??

我们换个方程吧,上面那个太难搞:

  • 4 x + 2 y = 10 4x+2y=10 4x+2y=10
  • 2 x + 3 y = 7 2x+3y=7 2x+3y=7

处理第 1 1 1列,以第一个式子为主元,第一个式子要先乘 2 4 \frac{2}{4} 42,(因为要让第一个式子乘某个系数被第二个式子减,让第二个式子的第一项系数为0)

  • 2 x + y = 5 2x+y=5 2x+y=5
  • 2 x + 3 y = 7 2x+3y=7 2x+3y=7

让二式变成二式减一式:

  • 2 x + y = 5 2x+y=5 2x+y=5
  • 0 x + 2 y = 2 0x+2y=2 0x+2y=2

成功让第一列只有第一行有系数。

第二列的处理一样,让第二行系数乘 1 2 \frac{1}{2} 21用第一行减第二行变成新的第一行。
OK,具体实现看代码吧。


代码

#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<algorithm>
#include<iomanip>
#include<cmath>
#define ldb long double
using namespace std;

int n;
ldb a[110][110];

int main(){
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n+1;j++)
			scanf("%Lf",&a[i][j]); 
	 for(int i=1;i<=n;i++)
	 {
	 	int x=i;
	 	for(int j=i+1;j<=n;j++)
	 		if(abs(a[j][i])>abs(a[x][i]))
	 			x=j;
	 	if(a[x][i]==0)
	 	{
	 		printf("No Solution\n");
	 		return 0;
		 } 
		for(int j=1;j<=n+1;j++)	
		 		swap(a[x][j],a[i][j]);
		for(int j=1;j<=n;j++)
		{
			if(i!=j)
			{
				ldb tmp=a[j][i]/a[i][i];
				for(int t=i;t<=n+1;t++)
					a[j][t]-=a[i][t]*tmp;
			}
		}
	 }
	 for(int i=1;i<=n;i++)
	{
		printf("%.2Lf\n",a[i][n+1]/a[i][i]);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值