(纪中)4757. 树上摩托

本文探讨了如何通过优化树的块划分,利用DFS算法解决题目中遇到的卡顿问题。关键在于确定节点大小是否为块大小的约数,并通过预处理和遍历来检查符合条件的节点数量。博主提供了两种解题思路:暴力枚举和BFS搜索,后者展示了更高效的解决方案。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在这里插入图片描述


解题思路

PS:投诉出题人,竟然卡dfs。

首先一个很显然的结论是,每块的大小一定是n的约数,

我们考虑一下将原树看做一个有根树,一个节点可以作一个块的”根”,当且仅当该节点的 size 能被块的大小整除 预处理出每个节点的 size,枚举树的大小 k,判断 size 为 k 的倍数的节点数量是否为 n / k n/k n/k就好了


代码
暴力

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<iomanip>
#include<cstring>
#include<cmath>
#include<map>
#include<queue>
#define ll long long
#define ldb long double
using namespace std;

int n,k,ans,x,y,l[1000010],num[1000010],head[2000010],q1[1000010],q2[1000010],m[10000010],v[1000010];

struct c{
	int x,next;
}a[2000010];

int read() {
    int x=0,f=1;
    char c=getchar();
    while(c<'0'||c>'9'){if(c=='-') f=-1;c=getchar();}
    while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
    return x*f;
}

void write(int x) {
     if(x<0) putchar('-'),x=-x;
     if(x>9) write(x/10);
     putchar(x%10+'0');
}

void add(int x,int y)
{
	a[++k].x=y;
	a[k].next=head[x];
	head[x]=k;
}

void dfs2(int x,int fa){
	v[x]=1;
	for(int i=head[x];i;i=a[i].next)
	{
		if(a[i].x!=fa&&!m[i])
		{
			dfs2(a[i].x,x);
			v[x]+=v[a[i].x];
		}
	}
}

bool check(){
	memset(v,0,sizeof(v));
	int k=0;
	for(int i=1;i<=n;i++)
	{
		if(!v[i])
		{
			dfs2(i,0);
			if(i==1) k=v[i];
			else if(v[i]!=k)return 0;
		}
	}
	return 1;
}

void dfs(int dep)
{
	if(dep>n-1)
	{
		if(check())
			ans++;
		return;
	}
	dfs(dep+1);
	m[q1[dep]]=m[q2[dep]]=1; 
	dfs(dep+1);
	m[q1[dep]]=m[q2[dep]]=0; 
}

int main(){
	n=read();
	for(int i=1;i<=n-1;i++)
	{
		x=read();y=read();
		add(x,y);
		q1[i]=k;
		add(y,x);
		q2[i]=k;
	}
	dfs(1); 
	cout<<ans<<endl;
}

BFS正解


#include<iostream>
#include<cstdio>
#include<algorithm>
#include<iomanip>
#include<cstring>
#include<cmath>
#include<map>
#include<queue>
#define ll long long
#define ldb long double
using namespace std;

int n,k,ans,x,y,l[1000010],num[1000010],head[2000010],q[1000010],fa[1000010];

struct c{
	int x,next;
}a[2000010];

int read() {
    int x=0,f=1;
    char c=getchar();
    while(c<'0'||c>'9'){if(c=='-') f=-1;c=getchar();}
    while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
    return x*f;
}

void write(int x) {
     if(x<0) putchar('-'),x=-x;
     if(x>9) write(x/10);
     putchar(x%10+'0');
}

void add(int x,int y)
{
	a[++k].x=y;
	a[k].next=head[x];
	head[x]=k;
}

void bfs()
{
	int h=0,t=1;
	q[1]=1;
	while(h<t)
	{
		h++;
		int x=q[h];
		l[x]=1;
		for(int i=head[x];i;i=a[i].next)
		{
			int y=a[i].x;
			if(y!=fa[x])
			{
				fa[y]=x;
				q[++t]=y;
			}
		}
	}
}

int main(){
	n=read();
	for(int i=1;i<=n-1;i++)
	{
		x=read();y=read();
		add(x,y);
		add(y,x);
	}
	bfs(); 
	for(int i=n;i>0;i--)
	{
		int u=q[i];
		for(int j=head[u];j;j=a[j].next)
		{
			if(a[j].x!=fa[u])
				l[u]+=l[a[j].x];
		}
	}
	for(int i=1;i<=n;i++)
		num[l[i]]++;
	for(int i=1;i<=n;i++)
	{
		if(n%i==0)
		{
			int s=0;
			for(int k=1;k<=n/i;k++)
				s+=num[k*i];
			if(s==n/i)
				ans++;
		}
	}
	printf("%d",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值