【洛谷 P1004】方格取数

66 篇文章 1 订阅
10 篇文章 0 订阅
本文介绍了一种使用四维动态规划解决的问题,目标是找到第一个人从(i, j)出发,第二人从(k, l)出发,同时到达目的地的最优路径,考虑了n*n网格中的限制条件。通过计算四个位置之间的距离加权,给出了解决方案并展示了C++代码实现。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在这里插入图片描述


解题思路

f [ i ] [ j ] [ k ] [ l ] f[i][j][k][l] f[i][j][k][l]表示第一个人走到 ( i , j ) (i,j) (i,j),第二个人走到 ( k , l ) (k,l) (k,l)的最优解,由于 n < = 9 n<=9 n<=9 n 4 的 D P n^4的DP n4DP就行了


代码

#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;

int n,x,y,z,a[15][15],f[15][15][15][15];

int main(){
	scanf("%d",&n);
	scanf("%d",&x);
	while(x!=0)
	{
		scanf("%d%d",&y,&z);
		a[x][y]=z;
		scanf("%d",&x);
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			for(int k=1;k<=n;k++)
			{
				if((i+j-k>n)||(i+j<k))continue;
				for(int t=1;t<=n;t++)
				{
					if((i+j)!=(k+t))continue;
					f[i][j][k][t]=max(f[i-1][j][k-1][t],max(f[i][j-1][k-1][t],max(f[i-1][j][k][t-1],f[i][j-1][k][t-1])))+a[i][j]+a[k][t];
					if(i==k&&j==t)f[i][j][k][t]-=a[i][j];
				}
			}
		}
	}
	printf("%d",f[n][n][n][n]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值