解题思路
用 f [ i ] [ j ] [ k ] [ l ] f[i][j][k][l] f[i][j][k][l]表示第一个人走到 ( i , j ) (i,j) (i,j),第二个人走到 ( k , l ) (k,l) (k,l)的最优解,由于 n < = 9 n<=9 n<=9, n 4 的 D P n^4的DP n4的DP就行了
代码
#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int n,x,y,z,a[15][15],f[15][15][15][15];
int main(){
scanf("%d",&n);
scanf("%d",&x);
while(x!=0)
{
scanf("%d%d",&y,&z);
a[x][y]=z;
scanf("%d",&x);
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
for(int k=1;k<=n;k++)
{
if((i+j-k>n)||(i+j<k))continue;
for(int t=1;t<=n;t++)
{
if((i+j)!=(k+t))continue;
f[i][j][k][t]=max(f[i-1][j][k-1][t],max(f[i][j-1][k-1][t],max(f[i-1][j][k][t-1],f[i][j-1][k][t-1])))+a[i][j]+a[k][t];
if(i==k&&j==t)f[i][j][k][t]-=a[i][j];
}
}
}
}
printf("%d",f[n][n][n][n]);
}