【Ybtoj】 3.块的计数【树形DP强化训练】

66 篇文章 1 订阅

在这里插入图片描述
在这里插入图片描述


解题思路

g [ u ] g[u] g[u]表示以u的子树内所有联通块个数(必定选取u), f [ u ] f[u] f[u]为u的子树内不包含最大点权的联通块个数(必定选取u)

g [ u ] = ∏ v ∈ s o n u ( f [ v ] + 1 ) g[u]=∏_{v∈son_u}(f[v]+1) g[u]=vsonu(f[v]+1)

而,当u不是最大点权时, f [ u ] = ∏ v ∈ s o n u ( f [ v ] + 1 ) f[u]=∏_{v∈son_u}(f[v]+1) f[u]=vsonu(f[v]+1),否则, f [ u ] = 0 f[u]=0 f[u]=0

最终答案为 ∑ ( f [ u ] − g [ u ] ) . ∑(f[u]−g[u]). (f[u]g[u]).


代码

#include <bits/stdc++.h>
#define ll long long
using namespace std;

const ll mod=998244353;
ll k,n,u,v,sum,ans,maxn,w[100010],head[200010],f[100010],g[100010];

struct c {
	int x,next;
} a[200010];

void add(int x,int y) {
	a[++k]=(c) {
		y,head[x]
	};
	head[x]=k;
}

void dfs(int x,int fa) {
	if(w[x]!=maxn) 
		f[x]=1;
	else f[x]=0;
	g[x]=1;
	for(int i=head[x]; i; i=a[i].next) {
		int y=a[i].x;
		if(y==fa)continue;
		dfs(y,x);
		f[x]=f[x]*(f[y]+1)%mod;
		g[x]=g[x]*(g[y]+1)%mod;
	}
	sum=(sum+g[x])%mod;
	ans=(ans+f[x])%mod;
}

int main() {
	scanf("%lld",&n);
	maxn=-1e17;
	for(int i=1; i<=n; i++) {
		scanf("%lld",&w[i]);
		maxn=max(maxn,w[i]);
	}
	for(int i=1; i<n; i++) {
		scanf("%lld%lld",&u,&v);
		add(u,v);
		add(v,u);
	}
	dfs(1,0);
	printf("%lld",(sum+mod-ans)%mod);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值