FCM算法

FCM模糊聚类算法是一种基于模糊划分的聚类方法,允许样本以不同的隶属度同时属于多个类别。算法通过优化目标函数,确定样本对各类中心的隶属度,实现自动分类。在迭代过程中,目标函数J会逐渐趋向稳定,当J不再变化时,算法达到收敛。文章介绍了FCM的基本原理,并提供了代码实战示例,同时也指出了FCM可能得到局部最优解的缺点。
摘要由CSDN通过智能技术生成

1.FCM模糊聚类算法

如何理解模糊聚类中的“模糊”二字?
假设有两个集合分别是A、B,有一成员a,传统的分类概念a要么属于A要么属于B,在模糊聚类的概念中a可以0.3属于A,0.7属于B,这就是其中的“模糊”概念。

模糊聚类分析有两种基本方法:系统聚类法和逐步聚类法。

系统聚类法个人理解类似于密度聚类算法,逐步聚类法类是中心点聚类法。

逐步聚类法是一种基于模糊划分的模糊聚类分析法。它是预先确定好待分类的样本应分成几类,然后按照最优原则进行在分类,经多次迭代直到分类比较合理为止。
在分类过程中可认为某个样本以某一隶属度隶属某一类,又以某一隶属度隶属于另一类。这样,样本就不是明确的属于或不属于某一类。若样本集有n个样本要分成c类,则他的模糊划分矩阵为c×n。
该矩阵有如下特性:
①. 每一样本属于各类的隶属度之和为1。
②. 每一类模糊子集都不是空集。
模糊C-均值(FCM)算法应用最广泛且成功,它通过优化目标函数得到每个样本点对所有类中心的隶属度,从而对样本进行自动分类。

2.FCM算法原理

假设我们有数据集X, 对X中的数据进行分c个类,对应的c类中心有 C i C_i Ci,每个样本 X i j X_{ij} Xij属于某个类 C j C_j Cj的隶属度定为 U i j U_{ij} Uij,则定义一个FCM目标函数及其约束条件为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值