1.FCM模糊聚类算法
如何理解模糊聚类中的“模糊”二字?
假设有两个集合分别是A、B,有一成员a,传统的分类概念a要么属于A要么属于B,在模糊聚类的概念中a可以0.3属于A,0.7属于B,这就是其中的“模糊”概念。
模糊聚类分析有两种基本方法:系统聚类法和逐步聚类法。
系统聚类法个人理解类似于密度聚类算法,逐步聚类法类是中心点聚类法。
逐步聚类法是一种基于模糊划分的模糊聚类分析法。它是预先确定好待分类的样本应分成几类,然后按照最优原则进行在分类,经多次迭代直到分类比较合理为止。
在分类过程中可认为某个样本以某一隶属度隶属某一类,又以某一隶属度隶属于另一类。这样,样本就不是明确的属于或不属于某一类。若样本集有n个样本要分成c类,则他的模糊划分矩阵为c×n。
该矩阵有如下特性:
①. 每一样本属于各类的隶属度之和为1。
②. 每一类模糊子集都不是空集。
模糊C-均值(FCM)算法应用最广泛且成功,它通过优化目标函数得到每个样本点对所有类中心的隶属度,从而对样本进行自动分类。
2.FCM算法原理
假设我们有数据集X, 对X中的数据进行分c个类,对应的c类中心有 C i C_i Ci,每个样本 X i j X_{ij} Xij属于某个类 C j C_j Cj的隶属度定为 U i j U_{ij} Uij,则定义一个FCM目标函数及其约束条件为: