快速排序是对冒泡排序的一种改进。它的基本思想是:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一不部分的所有数据都要小,然后再按次方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。最坏情况的时间复杂度为O(n2),最好情况时间复杂度为O(nlog2n)。
假设要排序的数组是A[1]……A[N],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一躺快速排序。一趟快速排序的算法是:
1)、设置两个变量I、J,排序开始的时候I:=1,J:=N;
2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1];
3)、从J开始向前搜索,即由后开始向前搜索(J:=J-1),找到第一个小于X的值,两者交换;
4)、从I开始向后搜索,即由前开始向后搜索(I:=I+1),找到第一个大于X的值,两者交换;
5)、重复第3、4步,直到I=J;
例如:待排序的数组A的值分别是:(初始关键数据X:=49)
A[1] A[2] A[3] A[4] A[5] A[6] A[7]:
49 38 65 97 76 13 27
进行第一次交换后: 27 38 65 97 76 13 49
( 按照算法的第三步从后面开始找)
进行第二次交换后: 27 38 49 97 76 13 65
( 按照算法的第四步从前面开始找>X的值,65>49,两者交换,此时I:=3 )
进行第三次交换后: 27 38 13 97 76 49 65
( 按照算法的第五步将又一次执行算法的第三步从后开始找)
进行第四次交换后: 27 38 13 49 76 97 65
( 按照算法的第四步从前面开始找大于X的值,97>49,两者交换,此时J:=4 )
此时再执行第三步的时候就发现I=J,从而结束一躺快速排序,那么经过一躺快速排序之后的结果是:27 38 13 49 76 97 65,即所以大于49的数全部在49的后面,所以小于49的数全部在49的前面。
快速排序就是递归调用此过程——在以49为中点分割这个数据序列,分别对前面一部分和后面一部分进行类似的快速排序,从而完成全部数据序列的快速排序,最后把此数据序列变成一个有序的序列,根据这种思想对于上述数组A的快速排序的全过程如图6所示:
初始状态 {49 38 65 97 76 13 27}
进行一次快速排序之后划分为 {27 38 13} 49 {76 97 65}
分别对前后两部分进行快速排序 {13} 27 {38}
结束 结束 {49 65} 76 {97}
49 {65} 结束
结束
图6 快速排序全过程
1)、设有N(假设N=10)个数,存放在S数组中;
2)、在S[1。。N]中任取一个元素作为比较基准,例如取T=S[1],起目的就是在定出T应在排序结果中的位置K,这个K的位置在:S[1。。K-1]<=S[K]<=S[K+1..N],即在S[K]以前的数都小于S[K],在S[K]以后的数都大于S[K];
3)、利用分治思想(即大化小的策略)可进一步对S[1。。K-1]和S[K+1。。N]两组数据再进行快速排序直到分组对象只有一个数据为止。
如具体数据如下,那么第一躺快速排序的过程是:
数组下标: 1 2 3 4 5 6 7 8 9 10
45 36 18 53 72 30 48 93 15 36
I J
(1) 36 36 18 53 72 30 48 93 15 45
(2) 36 36 18 45 72 30 48 93 15 53
(3) 36 36 18 15 72 30 48 93 45 53
(4) 36 36 18 15 45 30 48 93 72 53
(5) 36 36 18 15 30 45 48 93 72 53
通过一躺排序将45放到应该放的位置K,这里K=6,那么再对S[1。。5]和S[6。。10]分别进行快速排序。
/**
*交换指定数组a的两个变量的值
*@parama数组应用
*@parami数组下标
*@paramj数组下标
*/
publicstaticvoid swap(int a[], int i, int j) {
if(i == j) return;
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;
}
/**
*
*@paramarray待排序数组
*@paramlow数组下标下界
*@paramhigh数组下标上界
*@returnpivot
*/
publicstaticint partition(int array[], int low, int high) {
//当前位置为第一个元素所在位置
int p_pos = low;
//采用第一个元素为轴
int pivot = array[p_pos];
for (int i = low + 1; i <= high; i++) {
if (array[i] < pivot) {
p_pos++;
swap(array, p_pos, i);
}
}
swap(array, low, p_pos);
return p_pos;
}
/**
*快速排序实现
*@paramarray
*@paramlow
*@paramhigh
*/
publicstaticvoid quickSort(int array[], int low, int high) {
if (low < high) {
int pivot = partition(array, low, high);
quickSort(array, low, pivot - 1);
quickSort(array, pivot + 1, high);
}
}
上面的代码是从网上找的,选取的是数组第一个数作为比较数,下面是自己写的,以中间的数为比较数,其实思想都是每次比较后把比较数放中间,然后不断递归下去而已:
public static void x_quickSort(int[] array, int low, int high){
if(low < high){
int midDataIndex = x_partition(array, low, high);
if(midDataIndex-1>low)
x_quickSort(array, low, midDataIndex-1);
if(midDataIndex+1<high)
x_quickSort(array, midDataIndex+1, high);
}
}
public static int x_partition(int[] array, int low, int high){
int midData = array[(low+high)/2];
x_swap(array, low, (low+high)/2);
int midDataIndex = low;
low++;
boolean low_found = false;
while(low<high){
if(array[low]<midData && !low_found)
low++;
else
low_found = true;
if(array[high]>midData)
high--;
else if(low_found){
x_swap(array, low, high);
low_found=false;
high--;
}
}
if(array[low]<midData)
x_swap(array, low, midDataIndex);
else
x_swap(array, low-1, midDataIndex);
return low;
}
public static void x_swap(int[] array, int low, int high){
if(low==high) return;
array[low] = array[low] + array[high];
array[high] = array[low] - array[high];
array[low] = array[low] - array[high];
}