书生大模型全链路开源体系

哔哩哔哩:https://www.bilibili.com/video/BV1Rc411b7ns/

简介

大模型是发展通用人工智能的重要途径。从专用模型(AlphaGo、人脸识别、德州扑克等)到通用大模型,一个模型应对多个任务、多种模态。

书生-浦语大模型

书生-浦语大模型陆续推出:

  • InternLM-7B:70亿参数,8k语境,26种语言
  • InternLM-20B:200亿参数,4k语境训练,推理可达16k
  • InternLM-123B:千亿参数,

从模型到应用

从模型到应用是一个长链条:模型选型-续训/全参数微调(算力足够)-部分参数微调(算力不足,如LoRA)-构建智能体(与外部系统进行交互)-模型评测-模型部署。

全链条开源体系

书生-浦语全链条开源体系:

  • 数据:书生-万卷
  • 预训练框架:InterLM-Train
  • 微调:XTuner
  • 部署:LMDeploy
  • 应用:Lagent、AgentLego

书生-万卷

50亿文档,1TB数据量
OpenDataLab 开放数据平台:30+模态,80TB数据

InterLM-Train

可扩展
高性能
无缝对接HuggingFace
开箱即用:支持多规格语言模型

XTuner

微调
增量续训:让基座模型学习到一些新知识,如垂直领域知识
训练数据:文字、书籍或代码等。

有监督微调:让模型学会和理解各种指令,或者注入少量领域知识。
训练数据以高质量对话、问答数据为主

XTuner:支持多种微调算法,适配Huggingface、ModelScope的模型或数据集,自动优化加速,适配多种硬件(消费级显卡+数据中心显卡)

OpenCompass

大模型开源评测体系:6个维度进行评测。
主要面向基座模型和对话模型。

LMDeploy

大模型部署LMDeploy:

  • 模型并行
  • 低比特量化
  • Attention优化
  • 计算和访存优化
  • 持续批处理。

支持模型的轻量化(4bit权重、8bit k/v)、推理(turbomind & pytorch)和服务(open-ai server, gradio, triton inference server),对外提供python、grpc、restful接口。

Lagent

LLM局限:最新知识获取;回复可靠性;数学计算;工具使用和交互。
使用LLM驱动智能体。
轻量级Lagent框架:
ReAct:根据输入选择工具
ReWoo:根据输入划分计划
AutoGPT:人工干预

支持多种大语言模型,集成了一些工具。

AgentLego

多模态智能体工具箱,聚焦工具集合。
支持多种主流智能体系统,如langchain、transformers agent、Lagent
支持多模态工具调用接口
支持一键式部署。

Lagent案例

短期记忆
推理与计划
长期记忆
环境互动
多智能体写作

Agent不是一个app,它是应用LLM的框架。
计划、行动、反馈、学习
agent架构
LLM for agent(agent对LLM的要求):

  • 逻辑推理能力
  • 信息抓取能力
  • 指令遵循能力
  • 工具使用能力

提示工程思维模型

  • 把模型想象成没有任何背景信息的新人 stateless
  • 平行宇宙概念模型 model pre-training
  • 模型需要文本输出来思考 auto-regressive

工具:code copilot; EasyDict



喜欢的朋友记得点赞、收藏、关注哦!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值