自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 收藏
  • 关注

原创 mmdetection学习日记

想复现Oriented R-CNN的代码并做一些改动,下载下来发现是使用的mmdetection框架,于是边学习记录一些遇到的问题。1、训练步骤(1)在configs中选自己想要用的模型,可以直接修改,我习惯新建一个.py文件,将model、dataset等config文件全部复制过来,方便改动,即开头的_base_中所有文件都拷贝到新.py中。(2)修改后命令行内运行python tools/train.py configs/xxx.py2、无法下载预训练模型,报错"HTTP

2021-11-17 11:31:56 2468

原创 将COCO格式的json文件转化为DOTA格式标签的代码实现

用oriented bounding box网络训练自己的数据集时,发现基本是针对DOTA数据集格式的,自己的数据集是labelme多边形标注,再转化成COCO格式的,写了一个小脚本把它再转化成DOTA格式。DOTA数据集标签:保存在具有相同文件名的文本文件中(image_name.txt)标签格式为:x1, y1, x2, y2, x3, y3, x4, y4, category, difficult转化思路:1、获取COCO.json文件中的“annotation”信息,.

2021-11-10 19:47:00 3315 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除