欧拉函数在数论中指的是,对于正整数N,小于或等于N ([1,N]),且与N互质的正整数(包括1)的个数,记作φ(n)。
以下是欧拉函数的模板
1,直接求φ(n)
int Euler(int n)
{
int ret=n;
for(int i=2;i<=sqrt(n);i++)
if(n%i==0)
{
ret=ret/i*(i-1);//先进行除法防止溢出(ret=ret*(1-1/p(i)))
while(n%i==0)
n/=i;
}
if(n>1)
ret=ret/n*(n-1);
return ret;
}
2,通过素数表直接求φ(n)
int euler(int n)
{
int res = n;
for (int i = 1; i<=primesize&&prime[i] * prime[i] <= n; i++)
{
if (n%prime[i] == 0)
{
res = res / prime[i] * (prime[i] - 1);
while (n%prime[i] == 0)
n /= prime[i];
}
}
if (n>1)
res = res / n*(n - 1);
return res;
}
3,对欧拉函数用筛数法打表
#define size 1000001
int euler[size];
void Init()
{
memset(euler,0,sizeof(euler));
euler[1]=1;
for(int i=2;i<size;i++)
if(!euler[i])
for(int j=i;j<size;j+=i)
{
if(!euler[j])
euler[j]=j;
euler[j]=euler[j]/i*(i-1);//先进行除法防止中间数据的溢出
}
}