2017ICPC北京赛区网络赛 E Territorial Dispute(计算几何)

Territorial Dispute

时间限制: 1000ms
单点时限: 1000ms
内存限制: 256MB

描述

In 2333, the C++ Empire and the Java Republic become the most powerful country in the world. They compete with each other in the colonizing the Mars.

There are n colonies on the Mars, numbered from 1 to n. The i-th colony's location is given by a pair of integers (xi, yi). Notice that latest technology in 2333 finds out that the surface of Mars is a two-dimensional plane, and each colony can be regarded as a point on this plane. Each colony will be allocated to one of the two countries during the Mars Development Summit which will be held in the next month.

After all colonies are allocated, two countries must decide a border line. The Mars Development Convention of 2048 had declared that: A valid border line of two countries should be a straight line, which makes colonies of different countries be situated on different sides of the line.

The evil Python programmer, David, notices that there may exist a plan of allocating colonies, which makes the valid border line do not exist. According to human history, this will cause a territorial dispute, and eventually lead to war.

David wants to change the colony allocation plan secretly during the Mars Development Summit. Now he needs you to give him a specific plan of allocation which will cause a territorial dispute. He promises that he will give you 1000000007 bitcoins for the plan.

输入

The first line of the input is an integer T, the number of the test cases (T ≤ 50).

For each test case, the first line contains one integer n (1 ≤ n ≤ 100), the number of colonies.

Then n lines follow. Each line contains two integers xi, yi (0 ≤ xi, yi ≤ 1000), meaning the location of the i-th colony. There are no two colonies share the same location.

There are no more than 10 test cases with n > 10.

输出

For each test case, if there exists a plan of allocation meet David's demand, print "YES" (without quotation) in the first line, and in the next line, print a string consisting of English letters "A" and "B". The i-th character is "A" indicates that the i-th colony was allocated to C++ Empire, and "B" indicates the Java Republic.

If there are several possible solutions, you could print just one of them.

If there is no solution, print "NO".

注意

This problem is special judged.

样例输入
2
2
0 0
0 1
4
0 0
0 1
1 0
1 1
样例输出
NO
YES
ABBA

题意:给你n个点,问你能否把这n个点分别标记为A,B,使得怎么样也无法用一条直线把A点和B点分在直线两侧,如果可以,就输出YES并按顺序输出这n个点分别标记为A还是B,不行就输出NO。


思路:这道题dalao说用凸包,但是我并没有用。首先根据题意显而易见的是n<=2的时候,都输出NO。然后当n=3的时候我们可以枚举这三个点,判断该点是否在另外两条线的连线上,简而言之就是看这三点共不共线,如果共线就输出YES,然后中间那个点输出B,两端的点输出A,反过来也行,如果不共线那么一定是NO。然后当n>=4的时候,我们可以发现一个规律,任意四个点一定存在满足条件的A和B的搭配,也就是说n>=4的时候一定输出YES,那么接下来就是看要如何搭配了,首先这四个肯定不是AAAA或者BBBB,那么我们先找三个A一个B的情况,这种情况其实只由一种,就是B在三个A所组成的三角形内部的时候,这个时候无论如何也不可能用一条线把A和B分成两部分,除此以外的情况都是可以的。然后就是两个A两个B的情况,这个时候我们只要看两个B的线段和两个A的线段是否相交即可,如果相交那么这四个点就是满足条件的点,最后按顺序输出即可,这四个点以外的点可以随便输出。三个B和一个A与三个A和一个B是一样的,不用考虑,这些结论都只要在纸上模拟一下便很快就可以知道。


#include <iostream>  
#include <cstdio>  
#include <cstring>  
#include <string>  
#include <cstdlib>  
#include <cmath>  
#include <vector>  
#include <queue>  
#include <map>  
#include <algorithm>  
#include <set>  
#include <functional>  
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int INF = 1e9 + 5;
const int MAXN = 100000007;
const int MOD = 1e9 + 7;
const double eps = 1e-8;
const double PI = acos(-1.0);
LL gcd(LL a, LL b){return b == 0 ? a : gcd(b, a%b);}

struct POINT
{
	double x;
	double y;
	POINT(double a = 0, double b = 0) { x = a; y = b; } //constructor 
};
struct LINESEG
{
	POINT s;
	POINT e;
	LINESEG(POINT a, POINT b) { s = a; e = b; }
	LINESEG() { }
};

POINT pp[105];

double multiply(POINT sp, POINT ep, POINT op)
{
	return((sp.x - op.x)*(ep.y - op.y) - (ep.x - op.x)*(sp.y - op.y));
}

bool online(LINESEG l, POINT p)
{
	return((multiply(l.e, p, l.s) == 0) && (((p.x - l.s.x)*(p.x - l.e.x) <= 0) && ((p.y - l.s.y)*(p.y - l.e.y) <= 0)));
}

bool intersect(LINESEG u, LINESEG v)
{
	return((max(u.s.x, u.e.x) >= min(v.s.x, v.e.x)) && //排斥实验 
		(max(v.s.x, v.e.x) >= min(u.s.x, u.e.x)) &&
		(max(u.s.y, u.e.y) >= min(v.s.y, v.e.y)) &&
		(max(v.s.y, v.e.y) >= min(u.s.y, u.e.y)) &&
		(multiply(v.s, u.e, u.s)*multiply(u.e, v.e, u.s) >= 0) && //跨立实验 
		(multiply(u.s, v.e, v.s)*multiply(v.e, u.e, v.s) >= 0));
}

bool InsideConvexPolygon(int vcount, POINT polygon[], POINT q) // 可用于三角形! 
{
	POINT p;
	LINESEG l;
	int i;
	p.x = 0; p.y = 0;
	for (i = 0; i<vcount; i++) // 寻找一个肯定在多边形polygon内的点p:多边形顶点平均值 
	{
		p.x += polygon[i].x;
		p.y += polygon[i].y;
	}
	p.x /= vcount;
	p.y /= vcount;

	for (i = 0; i<vcount; i++)
	{
		l.s = polygon[i]; l.e = polygon[(i + 1) % vcount];
		if (multiply(p, l.e, l.s)*multiply(q, l.e, l.s)<0) /* 点p和点q在边l的两侧,说明点q肯定在多边形外 */
			break;
	}
	return (i == vcount);
}

int main()
{
	POINT rec[3];
	int T,n;
	scanf("%d", &T);
	while (T--)
	{
		scanf("%d", &n);
		for (int i = 1; i <= n; i++)
			scanf("%lf%lf", &pp[i].x, &pp[i].y);
		if (n <= 2)
			printf("NO\n");
		else if (n == 3)
		{
			if (online(LINESEG(pp[2],pp[3]), pp[1]))//pp[1]是否在pp[2]和pp[3]的连线上,下同
				printf("YES\nABB\n");
			else if (online(LINESEG(pp[1],pp[3]), pp[2]))
				printf("YES\nBAB\n");
			else if (online(LINESEG(pp[1],pp[2]), pp[3]))
				printf("YES\nBBA\n");
			else
				printf("NO\n");
		}
		else
		{
			if (intersect(LINESEG(pp[1], pp[2]), LINESEG(pp[3], pp[4])))//先找两A两B的情况,pp[1]和pp[2]的连线是否和pp[3]和pp[4]的连线相交,下同
			{
				printf("YES\nAABB");
				for (int t = 5; t <= n; t++)
					printf("A");
				printf("\n");
			}
			else if (intersect(LINESEG(pp[1], pp[3]), LINESEG(pp[2], pp[4])))
			{
				printf("YES\nABAB");
				for (int t = 5; t <= n; t++)
					printf("A");
				printf("\n");
			}
			else if (intersect(LINESEG(pp[1], pp[4]), LINESEG(pp[2], pp[3])))
			{
				printf("YES\nABBA");
				for (int t = 5; t <= n; t++)
					printf("A");
				printf("\n");
			}
			else//当都不相交的时候来找三A一B的情况
			{
				rec[0] = pp[1],rec[1] = pp[2],rec[2] = pp[3];
				if (InsideConvexPolygon(3, rec, pp[4]))//pp[4]是否在pp[1]pp[2]pp[3]组成的三角形中,下同
				{
					printf("YES\nAAAB");
					for (int t = 5; t <= n; t++)
						printf("A");
					printf("\n");
					continue;
				}
				rec[0] = pp[1],rec[1] = pp[2],rec[2] = pp[4];
				if (InsideConvexPolygon(3, rec, pp[3]))
				{
					printf("YES\nAABA");
					for (int t = 5; t <= n; t++)
						printf("A");
					printf("\n");
					continue;
				}
				rec[0] = pp[1],rec[1] = pp[3],rec[2] = pp[4];
				if (InsideConvexPolygon(3, rec, pp[2]))
				{
					printf("YES\nABAA");
					for (int t = 5; t <= n; t++)
						printf("A");
					printf("\n");
					continue;
				}
				rec[0] = pp[2],rec[1] = pp[3],rec[2] = pp[4];
				if (InsideConvexPolygon(3, rec, pp[1]))
				{
					printf("YES\nBAAA");
					for (int t = 5; t <= n; t++)
						printf("A");
					printf("\n");
					continue;
				}
			}
		}
	}
}



在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值