AI观察:吴恩达最新文章——使用具体示例来定义 AI 产品

9b7475c2f1355d7cb3808bfb7d110e07.jpeg

AI 产品管理正在迅速发展。生成式 AI 和基于 AI 的开发人员工具的增长为构建 AI 应用程序创造了无数机会。这使得构建新事物成为可能,这反过来又推动了产品管理最佳实践的转变——定义构建什么来服务用户的学科——因为可以构建的内容已经发生了变化。在这封信中,我将分享我注意到的一些最佳实践。

使用具体示例来指定 AI 产品。从具体想法开始有助于团队加快速度。如果产品经理 (PM) 提议构建“一个聊天机器人来回答与用户账户相关的银行查询”,这是一个模糊的规范,留给人们很多想象空间。例如,聊天机器人应该只回答有关账户余额的问题,还是也回答有关利率、启动电汇的流程等问题?但如果 PM 写出他们希望聊天机器人执行的对话的具体示例(例如,10 到 50 个),他们的提案范围就会变得更加清晰。正如机器学习算法需要训练示例来学习一样,AI 产品开发团队需要具体示例来说明我们希望 AI 系统做什么。换句话说,数据就是您的 PRD(产品需求文档)!

同样,如果有人要求“视觉系统检测我们商店外的行人”,开发人员很难理解边界条件。该系统是否有望在夜间工作?允许的摄像机角度范围是多少?它是否有望检测到出现在图像中的行人,即使他们距离 100 米?但如果 PM 收集了一些图片并用所需的输出对其进行注释,“检测行人”的含义就变得具体了。工程师可以评估规范在技术上是否可行,如果可行,则朝着它的方向发展。最初,数据可能通过一次性的、零散的过程获得,例如 PM 四处走动拍照并对其进行注释。最终,数据组合将转变为由生产中运行的系统收集的真实数据。

使用示例(例如输入和期望输出)来指定产品多年来一直很有帮助,但潜在的 AI 应用程序的激增使得更多产品经理需要学习这种做法。

通过提示评估基于 LLM 的应用程序的技术可行性。当 PM 确定潜在的 AI 应用程序的范围时,该应用程序是否真的可以构建(即其技术可行性)是决定下一步做什么的关键标准。对于许多基于 LLM 的应用程序的想法,PM(可能不是软件工程师)越来越有可能尝试提示(或只编写少量代码)以获得初步的可行性。

例如,PM 可能会设想一种新的内部工具,用于将客户的电子邮件路由到正确的部门(例如客户服务、销售等)。他们可以提示 LLM,看看他们是否可以根据输入的电子邮件选择正确的部门,并看看他们是否可以实现高精度。如果是这样,这将为工程部门提供一个实施该工具的绝佳起点。如果不是,PM 可以自己验证想法,也许可以比依赖工程师构建原型更快地改进产品想法。

通常,测试可行性需要的不仅仅是提示。例如,基于 LLM 的电子邮件系统可能需要基本的 RAG 功能来帮助它做出决策。幸运的是,现在编写少量代码的门槛很低,因为 AI 可以充当编码伙伴来提供帮助,正如我在课程“AI Python 初学者”中描述的那样。这意味着 PM 可以进行比以前更多的技术可行性测试,至少在基础层面上是如此。

无需工程师即可进行原型设计和测试。用户对初始原型的反馈也有助于塑造产品。幸运的是,快速构建原型的障碍正在减少,PM 自己可以在不需要软件开发人员的情况下推动原型向前发展。

除了使用 LLM 帮助编写原型代码外,Replit、Vercel 的 V0、Bolt 和 Anthropic 的 Artifacts(我很喜欢这些工具!)等工具也让没有编码背景的人更容易构建和试验简单的原型。这些工具越来越容易被非技术用户使用,但我发现那些了解基本编码的人能够更有效地使用它们,因此学习基本编码仍然很重要。(有趣的是,技术含量高、经验丰富的开发人员也会使用它们!)我的团队中的许多成员经常使用此类工具来制作原型、获取用户反馈并快速迭代。

人工智能正在使许多新应用程序得以构建,对知道如何确定范围并帮助推动这些产品构建进展的人工智能产品经理的需求大幅增长。人工智能产品管理以前就存在生成式人工智能的兴起,但构建应用程序的日益简单正在创造对人工智能应用程序的更大需求,因此许多 PM 正在学习人工智能和这些构建人工智能产品的新兴最佳实践。我发现这门学科非常有趣,并将继续分享最佳实践,随着它们的成长和发展。

吴恩达

2024年12月11日

吴恩达(1976-,英文名:Andrew Ng),华裔美国人,斯坦福大学计算机科学系和电子工程系副教授,人工智能实验室主任。吴恩达是人工智能和机器学习领域国际上最权威的学者之一。吴恩达也是在线教育平台Coursera的联合创始人(with Daphne Koller),DeepLearning.AI创始人。 

2014年5月16日,吴恩达加入百度,担任百度公司首席科学家,负责百度研究院的领导工作,尤其是Baidu Brain计划。

2024年4月,亚马逊将吴恩达纳入其董事会。

(本文是翻译,文章内容不代表本号立场)

觉得文章不错,顺手点个“点赞”、“在看”或转发给朋友们吧。

197a5b9645a7fd6baedbbdd3f443da32.png

相关阅读:

最新洞见:GenAI在企业应用中的既要又要

短短3个月,我们在GenAI上的进展

关于译者


2c8637ba189a10da8fe09db67784f55d.png

关注公众号看其它原创作品

坚持提供对你有用的信息

觉得好看,点个“点赞”、“在看”或转发给朋友们,欢迎你留言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值