会写代码的孙悟空
长夜将至,我将开始守护chatGPT,直至永恒。我将不图安逸,不恋名利,不惧挑战。我将不拘泥于旧知,不追求虚荣。我将全力以赴,勇攀科学之巅。我是黑暗中的明灯,chatGPT的利剑。我是破除迷雾的火焰,照亮chatGPT未来的光辉,唤醒求知者的号角,守护chatGPT真理的坚盾。我将生命与荣耀献给chatGPT的研究,今日如此,日日皆然。
展开
-
manus实现原理分析-以角色扮演游戏开发为例
manus是一个能实现复杂规划、执行任务、得到结果的智能体,其行为类似于能操作电脑的普通人、程序员、数据分析师等。原创 2025-03-18 10:10:59 · 55 阅读 · 0 评论 -
deepseek免费api 调用指南
发布于2024年12月,第三代模型,性能强劲。通过FP8混合精度训练、无辅助损失负载均衡等技术创新,V3实现了高效训练与推理,并支持128K长上下文处理。生成速度从V2的20 TPS提升至60 TPS,速度提升3倍。V3在知识问答、长文本处理、代码生成等领域表现超越其他开源模型,并在数学竞赛中超越闭源模型如GPT-4。该模型推出后,成为开放源代码模型中的领跑者。:专注于推理能力的模型,通过强化学习与多阶段训练流程深度优化。包括DeepSeek-R1-Zero,完全基于强化学习训练的早期版本;原创 2025-03-05 14:36:57 · 323 阅读 · 0 评论 -
使用openai sdk调用满足规范的大模型api
OpenAI SDK 调用多种大模型服务接口.openai_base_client.py”, line 1059, in _requestraise self._make_status_error_from_response(err.response) from Noneopenai.NotFoundError: 404 page not found原创 2025-03-03 16:38:51 · 214 阅读 · 0 评论 -
GPT-4 它不仅仅是 ChatGPT 的升级版,更是人工智能的一次革命性突破!简单原理剖析
GPT-4 不仅仅是 ChatGPT 的升级版,它更是一次质的飞跃!它不仅能理解文字,还能“看懂”图片,甚至可以根据图片内容进行推理和创作!想象一下,未来你可以随手拍下一张照片,GPT-4 就能为你写出一首诗、一个故事,甚至是一份专业的分析报告!这还不是全部!GPT-4 采用了更先进的专家混合(MoE)技术,在理解能力、生成质量和安全性方面都有了显著提升。它不仅在各种专业和学术测试中达到了人类水平,还大幅减少了生成式 AI 常见的“幻觉”问题,让输出结果更加可靠可信。原创 2025-02-21 15:48:37 · 348 阅读 · 0 评论 -
大模型搜索引擎增强问答demo-纯python实现
搜索引擎获取到相关链接url后,需要这个url包含的正文内容,由于链接一般有十多个,所以采用多线程的方式同步下载所有url的HTML内容。需要实现的代码内容有,必应搜索爬虫程序,重排序,通义千问api调用,搜索引擎工具封装,langchain ZeroShotAgent调用。大模型搜索引擎增强问答定义:根据问题搜索得到相关内容,拼接prompt=问题+搜索结果,将这个prompt传入大模型,得到最终的结果。原创 2025-01-06 17:53:08 · 453 阅读 · 0 评论 -
大模型语音合成服务前后端代码示例,流式语音播放demo,基于Cosyvoice项目
语音合成CosyVoice大模型服务是依托大规模预训练语言模型,深度融合文本理解和语音生成的一项新型语音合成技术,能够精准解析并诠释各类文本内容,将其转化为宛如真人般的自然语音。魔搭社区本博文主要贡献是提供了一个基于fastapi的后端代码、一个HTML单页面前端代码,实现了一个简洁实用的流式播放示例,这是项目原始代码没有的。原创 2024-12-13 15:42:29 · 387 阅读 · 0 评论 -
基于ReAct提示词框架的大语言模型Agent原理
论文出自 ReAct: Synergizing Reasoning and Acting in Language Modelsreason:推理act: 行动先看reason和act都是哪种模式思维链技术(Chain of Thought)是一种用于提高大型语言模型(如GPT)解决问题能力的技巧。这种技术的核心思想是将复杂的问题分解成一系列更简单的步骤,然后逐步解决这些步骤,最终达到解决问题的目的。根本上来讲,思维链仍然是仅仅依靠大模型的回答。原创 2024-09-10 17:50:26 · 517 阅读 · 0 评论 -
大模型押题高考语文作文,带着大模型参加语文高考会怎么样?
大语言模型通常是指那些经过大量数据训练,能够理解和生成自然语言文本的人工智能系统。这些模型通常具有数百万到数十亿个参数,能够执行多种语言任务,例如语言翻译、文本摘要、问答系统、文本生成等。大语言模型能够捕捉语言的复杂性和细微差别,提供更加准确和自然的交互体验。当然,带着这个去考试肯定是违反考场纪律的,目前来说是绝对不允许的。在5年10年后也许就不一定了。原创 2024-06-06 22:30:44 · 314 阅读 · 0 评论 -
GPT-4o的多模态能力、实时交互能力展示
GPT-4o(“o”代表“omni”)是迈向更自然的人机交互的一大步——它接受文本、音频、图像和视频的任意组合作为输入,并生成文本、音频和图像的任意组合作为输出原创 2024-05-17 21:11:50 · 517 阅读 · 1 评论 -
windows下使用命令uvicorn启动fastapi程序有乱码,方框形状奇怪字符
执行命令uvicorn main:app --reload后出现的问题如图所示这个问题非常容易解决!原因是windows控制台 默认未开启 ANSI颜色的支持那么我们只需要开启就可以了。原创 2024-04-22 14:30:39 · 1073 阅读 · 0 评论 -
大模型应用开发-虚拟人-AI刘能、AI李宏伟
本案例通过python编程调用智谱的大模型接口,以及很简单的prompt设计,实现了用大语言模型模拟一个人物来和我们对话,前端HTML代码是用大语言模型生成的(原因:我根本不会写前端啊~~),本教程适合所有对大模型应用开发感兴趣的初学者,这是个非常有趣的案例。读完本教程你将收获:1 只需要一段角色描述、一个角色头像,制作一个你最喜欢的角色!(把好玩的打在评论区)2 一套可轻松部署的源代码及关键技术点讲解(真的很简单!3 对大模型的信心以及兴趣。原创 2024-03-15 17:33:19 · 440 阅读 · 1 评论 -
谷歌gemma2b windows本地cpu gpu部署,pytorch框架,模型文件百度网盘下载
Windows操作系统大于10GB的内存本教程使用pytorch框架运行gemma原创 2024-02-23 23:22:50 · 1443 阅读 · 0 评论 -
通用基础模型+提示词是否能胜过微调模型?医学案例研究
通用基础模型,如GPT-4,在各种领域和任务中展现出令人惊讶的能力。然而,普遍存在这样一种假设,即它们在没有专业知识深度训练的情况下无法达到专业能力。例如,迄今为止对医学竞赛基准的大多数探索都利用了领域特定的训练,正如在BioGPT和Med-PaLM等项目上所示。我们基于先前对GPT-4在医学挑战基准上的专业能力的研究,而无需特殊培训。与故意使用简单提示突显模型开箱即用的能力不同,我们进行了对提示工程的系统探索以提高性能。原创 2023-12-09 10:50:16 · 319 阅读 · 0 评论 -
chatGPT底层原理是什么,为什么chatGPT效果这么好?三万字长文深度剖析-下
本文从chatGPT一次生成一个词开始分析了其基本工作原理,在预测下一个词的概率时需要实用神经网络,作者介绍了网络、训练等概念。chatGPT能够工作的这么好,里面的原理、原因是什么?作者从语言学角度进行了一些探讨。总的来说,本文能够让我们了解chatGPT相关的细节,能够启发思考!原创 2023-11-09 12:43:30 · 619 阅读 · 0 评论 -
chatGPT底层原理是什么,为什么chatGPT效果这么好?三万字长文深度剖析-中
嗯,它应该是一组5000个左右的数字,给出了每个可能的“填充”单词的概率。现在考虑对这些权重进行微分,将输入数据看为定值,将权重看为变量,损失函数对每个变量可以计算出来一个偏导数,所有偏导数构成了一个向量,也就是梯度,梯度向量的相反方向就是最陡路径的方向,早在1684年莱布尼兹就发明微积分,这个数学原理都是非常经典的。正是这些工具的使用——无论是实用的还是概念性的——使我们在最近的几个世纪里超越了“纯粹的、未经训练的人类思想”所能达到的界限,为了人类的目的而捕捉到物理和计算宇宙中更多的东西。原创 2023-11-09 12:43:18 · 529 阅读 · 0 评论 -
chatGPT底层原理是什么,为什么chatGPT效果这么好?三万字长文深度剖析-上
ChatGPT能自动生成句子,看起来非常像人类创作的一样,这非常了不起,也是出乎意料的!但它是怎么做到的呢?为什么会成功呢?本文目的就是概述ChatGPT内部的运行机制——然后再探讨一下为什么它在生成有价值的文本方面表现得如此出色。首先,我要说明的是,本文侧重于整体上的理解——虽然会提到一些工程及理论,但更多的细节还需要大家之后深入研究。原创 2023-11-09 12:43:04 · 502 阅读 · 0 评论 -
围绕chatGPT的商业机会、商业点子独家分享。
大鹏展翅亦须风势,热爱技术的你是否在等待一个绝佳的机会?chatGPT必将颠覆目前的软件形态、龙头企业。这可能是我们这辈子最好的机会了!何不乘风而起,抟扶摇而上者九万里!本文主要展开想象,介绍围绕着chatGPT这种大语言模型最有价值、最有趣的创新项目,进行价值分析、商业分析。相信看完的你一定会有所启发!原创 2023-10-31 21:32:08 · 256 阅读 · 0 评论 -
使用LangChain与chatGPT API开发故事推理游戏-海龟汤
想通过程序自动化主持人,可通过chatGPT来判断玩家推理正确与否。LangChain是一个强大的框架,旨在帮助开发人员使用语言模型构建端到端的应用程序。提供了一套工具、组件和接口,可简化创建由大型语言模型 (LLM) 和聊天模型提供支持的应用程序的过程。原创 2023-10-19 22:03:09 · 1509 阅读 · 0 评论 -
llama2本地CPU推理运行
使用此仓库中的代码,您可以在PyTorch中从头开始训练Llama 2 LLM架构,然后将权重导出到二进制文件,并将其加载到一个简单的500行C文件(run.c)中,该文件进行模型推断。或者,您可以加载、微调和推断Meta的Llama 2(但这仍在积极完善中)。因此,该存储库是Llama 2 LLM的“全栈”训练+推断解决方案,强调极简和简单性。您可能认为您需要拥有许多十亿参数的LLM才能执行任何有用的操作,但实际上,如果将领域限制得足够狭窄,非常小的LLM也可以表现出令人惊讶的强大性能。原创 2023-08-20 21:29:47 · 816 阅读 · 0 评论 -
llama2模型下载
LLaMA 2-CHAT与OpenAI ChatGPT效果一样好。LLaMA 2与LLaMA 1架构相同,LLaMA 2训练数据是2000000000000个tokens,还是用了1000000个人类新标注的数据。上下文长度由2048提升为4096。原创 2023-08-07 22:29:19 · 6374 阅读 · 0 评论 -
使用chatGPT + AI 绘图生成自己的专属头像
chatGPT写prompt貌似不大靠谱,可能原因是技巧不到位,AI绘图网站不够好。直接自己写绘图prompt反而会效果好。用来当头像还是不错的!想加入chatgpt交流群一起交流的伙伴私聊拉你。原创 2023-07-09 10:34:56 · 1713 阅读 · 0 评论 -
chatGPT之100个例子-从体验到精通
我想让你扮演一个基于文本的宠物养成游戏。我在这个基于文本的养成游戏中扮演一个饲养者。请精炼地描述宠物所处的环境,每次对话需要输出宠物的饥饿值、洁净值、劳累值、健康值、心情值,初始所有数值都是满分100分。我将输入命令来描述对宠物的动作,而你需要客观判断宠物的变化,并给出目前状态。我的第一个宠物是猪。聊天分享。原创 2023-07-07 23:35:10 · 3538 阅读 · 2 评论 -
ChatGPT助力科研项目
当你需要撰写论文总结时,你可以使用以下类型的prompt来与ChatGPT交互:论文标题和作者:提供论文的标题和作者信息,以便ChatGPT在总结中引用这些信息。论文内容要点:概括性地列出论文的主要内容要点、方法或实验设计、结果和结论。你可以提供一些关键句子、术语或研究重点。论文贡献和创新:强调论文在相关领域的贡献和创新之处。这可以包括新的观点、解决方案、方法改进、实证研究结果等。论文意义和应用价值:探讨论文的意义、影响和潜在的应用价值。原创 2023-06-28 16:08:14 · 2863 阅读 · 0 评论 -
本地部署chatgpt之老虎中文大模型
TigerBot 是一个多语言多任务的大规模语言模型(LLM)。根据 OpenAI InstructGPT 论文在公开 NLP 数据集上的自动评测,TigerBot-7B 达到 OpenAI 同样大小模型的综合表现的 96%,并且这只是我们的 MVP,在此我们将如下探索成果开源:模型:TigerBot-7B, TigerBot-7B-base,TigerBot-180B (research version),代码:基本训练和推理代码,包括双卡推理 180B 模型的量化和推理代码,原创 2023-06-08 17:59:08 · 1569 阅读 · 0 评论 -
吴恩达+Open AI 《面向开发者的ChatGPT Prompt 工程》课程学习2——prompt指导原则1
吴恩达+Open AI 《面向开发者的ChatGPT Prompt 工程》课程学习2——prompt指导原则1原创 2023-05-27 11:32:40 · 1467 阅读 · 0 评论 -
精调训练中文LLaMA模型实战教程,民间羊驼模型
在学习完上篇【博文2:本地训练中文LLaMA模型实战教程,民间羊驼模型】后,我们已经学会了使用无监督的语料预训练LLaMA模型,无监督的语料能让模型学会预测下一个字符是什么,但是还不能让模型理解人类的对话意图,经过指令精调之后模型就可以具备对话能力了。1训练数据准备,精调指令.json。2训练脚本编写,主要参数讲解,消耗显存控制在24GB以内3训练实战,测评。原创 2023-05-26 16:41:01 · 3706 阅读 · 6 评论 -
吴恩达+Open AI 《面向开发者的ChatGPT Prompt 工程》课程学习1——课程介绍
吴恩达+Open AI 《面向开发者的ChatGPT Prompt 工程》课程学习1——课程介绍原创 2023-05-25 19:01:54 · 1274 阅读 · 0 评论 -
本地训练中文LLaMA模型实战教程,民间羊驼模型,24G显存盘它!
在学习完上篇【1本地部署中文LLaMA模型实战教程,民间羊驼模型】后,我们已经学会了下载模型,本地部署模型,部署为网页应用如果我们对于模型在某些方面的能力不够满意,想要赋予模型一些特殊的能力,那么我们可以选择领域内特殊的数据集,然后在基础模型上继续训练,从而得到一个新的模型例如我们可以把医学知识用于训练模型,得到一个医生chatGPT;把佛学资料用于训练模型,得到一个佛祖chatGPT;人类的已有知识是海量的,智慧是无穷的,我相信大家一定有更好的想法!1训练数据准备,纯文本txt数据。原创 2023-05-19 16:28:37 · 4609 阅读 · 3 评论 -
本地部署中文LLaMA模型实战教程,民间羊驼模型
LLaMA大部分是英文语料训练的,讲中文能力很弱。如果我们想微调训练自己的LLM模型,基于一个大规模中文语料预训练的模型比较好。目前开源项目很多,理想的项目要有以下特点:模型开源、训练代码开源、代码结构简单、环境容易安装、文档清晰。经过寻找与试验,我找到了一个比较好的项目。本博文要点如下:1 实战部分:模型下载与参数合并、模型命令行加载测试、模型部署为web网页(解决了一些报错问题)2 代码走读:模型参数合并、词表扩充3 原理分析:预训练与指令精调。原创 2023-05-05 11:43:57 · 7933 阅读 · 20 评论 -
LLaMA模型加载报错_sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg) TypeError: not a string
后面的ziqingyang/chinese-llama-plus-lora-7b是huggingface名字。我估计这里可能是个BUG,并没有深究,有知道的小伙伴评论告知一下。lora_model_path这一项不是string类型。也就是在斜杠前面加了反斜杠,就不报错了。原创 2023-05-03 20:32:18 · 3451 阅读 · 2 评论 -
autogpt环境搭建 Auto-GPT环境搭建
项目地址:https://github.com/Significant-Gravitas/Auto-GPT。原创 2023-04-25 11:04:45 · 435 阅读 · 0 评论 -
使用vscode中chatGPT插件快速编写代码
官网地址:https://code.visualstudio.com/输入openAI的API key之后就可以使用了,需要vpn原创 2023-04-24 16:27:17 · 2036 阅读 · 0 评论 -
chatGPT相关开源项目介绍
可在3090、4090等GPU上训练与部署,能力接近openAI的chatGPT大模型。小模型可以使用自己特定的数据集进行训练,打造与众不同的能力,不求能力广、而求能力专。基于小模型打造垂直应用,也是个不错的想法。:可以打开openAI的官网使用chatGPT,同时也有大佬开发了桌面端、网页版。:关于提示工程的项目,学好prompt才能更好的和chatGPT交流。这样做不是复制那么简单,可以增加语音识别、语音播放、prompt帮助等等。原创 2023-04-18 17:14:22 · 3114 阅读 · 0 评论 -
chatGPT插件是什么,chatGPT插件作用介绍
今天的语言模型虽然对各种任务有用,但仍然有限。他们可以从中学习的唯一信息是他们的训练数据。此信息可能已过时,并且适用于所有应用程序。此外,语言模型唯一可以开箱即用的就是发出文本。此文本可能包含有用的说明,但要真正遵循这些说明,您需要另一个过程。虽然不是一个完美的类比,但插件可以成为语言模型的“眼睛和耳朵”,使它们能够访问太新、太私人或太具体而无法包含在训练数据中的信息。为了响应用户的明确请求,插件还可以使语言模型代表他们执行安全、受限的操作,从而提高整个系统的实用性。原创 2023-03-27 10:06:57 · 6452 阅读 · 0 评论 -
GPT-2论文阅读
以往的自然语言处理任务:问答、翻译、阅读理解、总结,需要使用特定的有标签数据集进行监督训练。本文仅仅使用从网页搜集的数据集WebText,而没有使用任何监督数据,15亿参数的GPT-2直接在8个数据集上进行测试,7个取得了最先进水平。已有的机器学习系统像是专家,在特定数据集、特定标签训练后具备特定能力。本文造了一个更普遍的模型,无需在有标签数据集训练就可以胜任多种任务。原创 2023-03-16 08:51:54 · 519 阅读 · 0 评论 -
OpenAI公司介绍,考古OpenAI的愿景
今天,有用于监督语言任务(如问答、句法分析和机器翻译)的有前途的算法, 但 没有任何用于更高级的语言目标的算法,例如进行对话的能力、完全理解文档的能力,以及能够遵循自然语言中的复杂指令。随着分配给 AI 研究的组织和资源数量的增加,一个组织取得未公开的 AI 突破并将该系统用于潜在恶意目的的可能性也会增加。OpenAI有兴趣构建一个非常大的模拟,其中包含许多不同的智能体,它们可以相互交互、长时间学习、发现语言并实现各种各样的目标。感觉是一个大的虚拟世界,笔者很期待它的出现。ChatGPT:“我来啦!原创 2023-03-15 17:15:52 · 2169 阅读 · 0 评论 -
ChatGPT应用-ArxivGPT谷歌插件 解放正在苦苦读论文的你
ArxivGPT是一个谷歌Chrome插件,可帮助您快速了解arXiv论文的内容。只需单击一下,即可总结论文并提供关键见解,节省您的时间并帮助您快速掌握主要思想和概念。无论您是研究人员、学生,还是只是对某个特定主题感兴趣,ArxivGPT都能让您轻松了解您所在领域的最新动态。arXiv帮助人们快速掌握论文要点,是个好用的工具。嘿,别看了,快去自己体验一下!!!原创 2023-03-15 16:49:22 · 4197 阅读 · 3 评论 -
GPT-4介绍,论文链接
GPT-4 是 OpenAI 最先进的系统,可产生更安全、更有用的响应。GPT-4 可以更准确地解决难题,这要归功于其更广泛的常识和解决问题的能力。这是 OpenAI 努力扩展深度学习的最新里程碑。GPT-4 是一个大型多模态模型(接受图像和文本输入,发出文本输出),虽然在许多现实世界场景中的能力不如人类,但在各种专业和学术基准上表现出人类水平的表现。原创 2023-03-15 16:41:27 · 6360 阅读 · 2 评论 -
GPT-1论文阅读
从无标记文本中学习文本表征是有意义的,就像之前的词嵌入预训练一样。现有的预训练方法存在的问题是:模型需要根据任务调整、复杂的学习方法、需辅助目标函数。总结:麻烦。本文探索一种半监督方法用于语言理解任务:无监督预训练+有监督微调。目标是学习一种普遍的表征,只需要很少的改变就可用于宽泛范围的任务。模型是Transformer,对比RNN,Transformer优点是可建立文本的长依赖关系,对不同任务更加鲁棒。验证实验使用四种任务:自然语言推断、问答、语义相似、文本分类。原创 2023-03-14 19:22:27 · 433 阅读 · 1 评论