- 博客(1128)
- 资源 (15)
- 收藏
- 关注
原创 PyTorch入门:快速掌握深度学习框架
学习基础知识大多数机器学习工作流程都涉及处理数据、创建模型、优化模型参数和保存经过训练的模型。本教程向您介绍在 PyTorch 中实现的完整 ML 工作流,并提供链接以了解有关每个概念的更多信息。我们将使用 Fashion MNIST 数据集来训练一个神经网络,该网络预测输入图像是否属于以下类别之一:T 恤/上衣、裤子、套头衫、连衣裙、外套、凉鞋、衬衫、运动鞋、包或脚踝开机。Class 10 mnist 分类本教程假定您基本熟悉 Python 和深度学习概念。运行教程代码:这是最简单的入门方式。
2022-04-11 09:52:52
1676
原创 TensorBoard入门指南:30秒快速上手
TensorBoard快速入门指南 TensorBoard是TensorFlow和PyTorch的可视化工具,用于监控训练过程、分析模型结构和性能优化。安装只需执行pip install tensorboard(PyTorch需额外安装torch-tb-profiler)。集成方法:TensorFlow通过tf.keras.callbacks.TensorBoard回调,PyTorch使用SummaryWriter记录数据。启动命令为tensorboard --logdir=日志目录,默认访问localho
2020-05-20 11:47:44
656
2
原创 TensorFlowLite对象检测全解析
TensorFlow Lite对象检测是专为移动设备优化的轻量级机器学习解决方案。它通过预训练模型(如MobileNet SSD)实现实时目标检测,支持从摄像头获取图像并识别物体类别和位置。开发流程包括:1)下载并转换模型为TFLite格式;2)配置Android开发环境(API≥21);3)集成TFLite模型到应用中;4)处理输入图像并解析检测结果。该技术适用于资源受限设备,可通过量化、硬件加速等方法优化性能,典型应用包括移动端视觉识别、智能安防等场景。
2020-05-20 10:02:11
1051
1
原创 小白带你去开启PyTorch神经网络工具箱
小白带你去开启PyTorch神经网络工具箱要想成功,你要想把自己变为神奇的工具箱1.神经网络核心组件神经网络看起来很复杂,节点多,层数多,参数多。组件包括1) 层:神经网络的基本结构。2)模型:层构成的网络。3)loss函数:参数学习的目标函数,通过最小化损失函数来学习各种参数。4)优化器:使损失函数最小,是优化器的工作。1.1 神经网络组建关系图神经网络组...
2020-04-27 13:32:42
596
1
原创 小白带你用Numpy、Tensor、Autograd、TensorFlow等技术实现同一个机器学习任务
1.标量方向传播1.1 代码import torch#定义输入张量xx=torch.Tensor([3])print(x)#初始化权重参数W,偏移量b、并设置require_grad属性为True,为自动求导w=torch.randn(1,requires_grad=True)b=torch.randn(1,requires_grad=True)print("...
2020-04-26 21:33:41
563
2
原创 小白Pandas读取cvs进行分析数据
1.Python Randas 读取cvs,分析数据1.1 数据是从https://archive.ics.uci.edu/ml/machine-learning-" databases/undocumented/connectionist-bench/sonar/sonar.all-data获取import pandas as pdfrom pandas import D...
2020-04-26 15:00:13
675
1
原创 小白带你用ImageAI汽车图片
1.ImageAIImageAI是一个python库,它使开发人员、研究人员和学生能够使用简单的几行代码构建具有自包含的深入学习和计算机视觉功能的应用程序和系统。本文档提供了对ImageAI中可用的所有类和函数的详细了解,以及一些代码示例。ImageAI是一个由Moses Olafenwa和John Olafenwa开发的项目,后者是DeepQuest人工智能团队。代码下载为:http...
2020-04-25 22:16:49
644
1
原创 小白带你查看如何用OpenCV检查人脸图像
1.人脸识别是个分类问题人脸 不是人脸2.OpenCV提供三种不同的训练级联分类器通常的情况下,分类器会对多个图片特征进行识别,如一张拼图有...
2020-04-23 10:45:59
655
1
原创 TurboGears2快速生成自己WIKI分钟内搞定
Python的也蛮多的web工具,手写一个简单额web例子,算法分析很多的时候,都是页面图片,许需要彰显一下多张图片,方便判断识别。与您一起扩展的Web框架。TurboGears2建立在几个下一代web框架的基础上,这些框架包括TurboGears1(当然)、Django和Rails。所有这些框架都有令我们沮丧的局限性,而TG2正是为了应对这种挫折而构建的TurboGears安装...
2020-04-20 14:10:32
664
原创 Flutter TabBar增加跑步和地铁图标
1.TabBar例子2.源代码import 'package:flutter/material.dart';class TabBarSample extends StatelessWidget { @override Widget build(BuildContext context) { return MaterialApp( // 添加De...
2020-04-07 17:43:10
653
原创 使用python的flaskweb创建技巧和传参数
Flask的学习学习的目的是配置pycharm的工具和学习url反转1.Flask的Web首先,web的端口一般都是8080端口,可以考虑用修改端口的方式。#引入包from flask import Flask#定义Flask apptestapptest = Flask(__name__)#定义路由 /test@apptest.route("/test")#定义函数...
2019-12-17 11:58:51
1144
原创 Python Keras深度学习
本文整理了基于Python Keras的深度学习实例,涵盖计算机视觉、自然语言处理、时序数据处理和强化学习等多个应用场景。主要示例包括:使用CNN进行CIFAR-10图像分类、简化版YOLOv3目标检测、LSTM情感分析、Seq2Seq机器翻译、股票预测LSTM模型等。所有代码均采用TensorFlow 2.x和Keras API实现,包含模型构建、训练和评估过程。此外还介绍了模型优化技巧(混合精度训练、知识蒸馏)和部署方案(TF-Lite转换、ONNX导出),为开发者提供实用的深度学习实践参考。
2025-10-07 12:47:32
362
原创 Flutter与Dart结合AI开发实战
Flutter与Dart/Go混合开发摘要 本文介绍了Flutter结合Dart与Go语言的混合开发方案。主要内容包括: Flutter通过MethodChannel和FFI两种方式与Go交互 典型应用场景:基础通信、高性能计算、混合开发 20+具体实例,涵盖图像处理、音频分析、区块链等 性能优化技巧和工具链配置建议 关键代码片段展示Dart调用Go函数的方法 该方案充分发挥Dart的UI优势与Go的性能特点,适用于需要原生计算能力的跨平台应用开发。
2025-10-07 08:35:07
1010
原创 AI美女中秋祝福管理系统
本文展示了一个基于Java的中秋节AI祝福管理系统,包含以下核心功能: 基础功能模块: 随机祝福语生成 语音合成播报 人脸识别个性化祝福 高级AI交互: GPT-3智能祝福生成 用户情感分析响应 多语言支持 管理系统: 用户信息管理 祝福记录跟踪 定时任务调度 系统采用SpringBoot框架,整合OpenAI API、OpenCV等AI技术,支持Docker部署。代码示例展示了从基础祝福到智能交互的全流程实现,包括数据库设计、业务逻辑和前端展示。扩展功能还包含天气关联祝福、情感化交互等特色设计。
2025-10-07 08:31:41
633
原创 JAVA CodeX精选实用代码示例
本文提供基于JavaCodeX的实用代码示例,涵盖基础语法、数据结构、算法和高级应用场景。内容包括:基础语法(变量、循环、条件语句等)、数据结构操作(数组、链表、哈希表等)、字符串处理、文件读写、常用算法(排序、查找、递归等)、多线程实现、网络请求、JSON解析等。所有代码示例均经过验证,可直接用于实际开发,并特别说明适用于中国镜像环境(如阿里云、华为云等)。文中还包含Maven镜像配置示例,方便开发者快速搭建国内开发环境。
2025-09-24 16:55:39
420
原创 Rust开源HyperSwitch实战指南
本文展示了基于Rust的开源HyperSwitch框架的多种实用功能实现,包括基本HTTP服务器搭建、路由配置、中间件应用、JSON响应处理、静态文件服务和WebSocket支持等核心功能。同时提供了数据库集成、认证授权、速率限制、错误处理等进阶功能示例,以及HTTPS配置、测试工具、环境变量管理等辅助功能实现。代码示例涵盖从基础到高级的各个层面,展示了HyperSwitch在不同应用场景下的灵活性和扩展性,为开发者构建高性能网络服务提供了全面参考。
2025-09-23 15:14:57
1147
原创 Java温度控制与预测实战案例
本文介绍了基于Java的智能温度控制系统实现方案,包含多种AI技术的应用实例。主要内容分为:1)传统阈值控制方法,展示恒温器、空调等场景的代码实现;2)机器学习温度预测,使用Weka库实现线性回归、决策树等算法;3)模糊逻辑控制系统在工业、家电等领域的30个应用实例;4)神经网络PID控制方法,包括参数整定和前馈补偿。文章提供了完整的代码框架和实现要点,涵盖数据预处理、模型训练评估到部署的全流程,并建议采用分层架构设计系统。这些方案可根据实际需求组合使用,实现从简单阈值控制到复杂自适应调节的不同级别智能温控
2025-09-20 10:24:18
1051
原创 Java核物理与机器学习实战
摘要: 本文提供了两个实用Java示例集合:一是30个核物理与机器学习结合的框架,涵盖数据处理、模型训练和实际应用,使用Apache Commons Math、DJL等工具实现放射性衰变预测、粒子轨迹识别等功能;二是30个基础Java核心概念示例,包含单例模式、集合操作、多线程、IO/NIO等典型应用场景。所有代码均采用Java生态工具实现,核物理部分需符合IAEA安全标准并考虑硬件可靠性,基础示例覆盖Java核心技术点,可根据需求扩展。完整实现需参考各库文档并结合具体环境调整参数。
2025-09-16 15:27:14
305
原创 超酷编程体验:VibeCoding全指南
《VibeCoding编程体验优化指南》摘要 VibeCoding是一种通过多感官交互提升编程愉悦感的方法论。本文从环境配置、编辑技巧和工作流优化三个维度,提供了50个创新实践方案: 开发环境增强:包括动态主题配色、个性化终端、环境音效、生物反馈系统集成和RGB灯光同步等感官刺激方案。 智能编辑体验:涵盖语音编程、代码可视化、3D项目视图、音乐化算法展示等交互创新,如将排序过程转换为MIDI音符。 工作流优化:包含番茄钟集成、AR代码审查、气味反馈等跨模态设计,以及智能设备联动(如Tesla车机显示CI/C
2025-09-13 08:33:12
1331
原创 Java推荐系统与机器学习实战案例
摘要:本文介绍了基于Java的推荐系统与机器学习实现方案,涵盖协同过滤、矩阵分解、深度学习等多种方法。内容包含Apache Mahout、LibRec等开源框架的使用示例,以及A/B测试、文本分类、聚类算法等30个机器学习实例。同时提供了自动粉刷墙系统的30种Java实现方案,涉及硬件控制、算法优化、微服务架构等不同技术栈。这些实例可直接用于学习和开发,为Java开发者提供了全面的技术参考。
2025-09-13 08:23:53
1024
原创 Java驱动阅文集团AI创新实践
本文介绍了基于Java的阅文集团AI应用实现方案,主要包括以下核心内容:1. 自然语言处理应用:包括中文分词、情感分析、文本摘要生成等示例代码;2. 推荐系统实现:展示协同过滤和实时推荐系统代码框架;3. 读者画像构建:详细说明从数据预处理到聚类分析的完整流程;4. 动态定价模型:提供基于供需预测的机器学习实现方案;5. 语音合成技术:比较多种TTS引擎的集成方法;6. 跨语言翻译:涵盖30个网文出海场景的翻译实例。文章还包含Java代码优化技巧、常见语法错误修正、设计模式应用等实用内容,为构建AI驱动的数
2025-09-09 10:43:52
990
原创 深夜代码惊魂:Java程序员的恐怖怪谈
图书馆的规则必须严格遵守。若电梯意外停靠16层,不要走出电梯,连续按下关门键直到电梯重新运行。加班超过23:00的员工会收到一份夜宵,包装盒上没有logo的可以食用。部门主管的办公室没有窗户,若发现窗户出现,当天不要递交任何文件。兔子园区的地面应该是干燥的,出现水洼时不要拍照。若遇到穿黑色制服的管理员,不要与其对视,假装阅读手中书籍直至其离开。借阅期限为7天,逾期未还者会收到一封没有邮戳的信件,请勿拆开。电梯内的楼层按钮有时会闪烁,这是节能模式的表现。更衣室的储物柜编号不含数字4,发现带4的柜门不要使用。
2025-09-09 10:43:01
903
原创 Java17 LTS 新特性用例
摘要:本文提供了基于Java 17 LTS版本的30个实用代码示例,涵盖核心语言特性和API改进。主要内容包括:文本块(多行字符串)、switch表达式、模式匹配、密封类、record类等新特性;增强的Stream API、日期时间处理、HTTP客户端等API改进;以及集合操作、并发编程、文件IO等常见场景实现。所有示例均符合Java 17语法规范,展示了现代Java开发的简洁性和功能性,如文本块保留格式、switch表达式返回值、密封类限制继承等特性,帮助开发者快速掌握Java 17的核心功能。
2025-09-09 10:25:42
972
原创 JavaAI机器狗视觉识别实战
本文介绍了一个基于JavaWeb的AI视频管理平台,采用SpringBoot+MinIO+FFmpeg等技术栈实现视频上传、转码和元数据提取功能。平台集成OpenCV和TensorFlow进行人脸检测、动作识别等AI处理,支持Elasticsearch检索、WebSocket弹幕等交互功能。同时提供了基于SpringSecurity和Redis的完整安全方案,包括用户认证、会话管理、令牌控制等模块。系统采用微服务架构,支持容器化部署,包含视频审核、版权管理等后台功能,以及超分辨率增强、实时字幕翻译等高级特性
2025-09-04 14:29:39
1009
原创 2024 Java AI实战:从机器学习到深度学习
本文介绍了2024年Java在AI领域的应用实例,涵盖机器学习、NLP和计算机视觉等技术方向。主要内容包括:1)使用Deeplearning4j、TensorFlow等框架实现图像分类、线性回归等任务;2)基于OpenNLP、Stanford CoreNLP的NLP应用;3)计算机视觉案例;4)强化学习实现;5)Weka聚类分析;6)完整技术栈组合示例。特别提供了30个Tribuo文本分类代码框架,展示从数据加载到模型部署的全流程。文章还详细介绍了Weka聚类分析的Java实现方法,包括数据加载、算法选择和
2025-08-31 08:29:43
1057
原创 JavaWeb项目必备Git高效命令大全
Git命令速查指南(JavaWeb项目场景) 本文整理了Git在JavaWeb项目开发中的常用命令,涵盖初始化克隆、分支管理、提交日志、远程交互、撤销恢复等核心操作。重点包括:1)分支创建/合并/删除;2)提交修改与历史查看;3)远程仓库同步;4)代码撤销与修复;5)标签管理。特别提供了--graph可视化日志、grep代码搜索、stash暂存等高效技巧,以及rebase、cherry-pick等高级用法。每个命令附带典型应用场景说明,如git merge feature-x合并功能分支,git rever
2025-08-16 07:35:57
650
原创 揭秘gRPC:高性能RPC框架解析
gRPC是一种高性能开源RPC框架,基于HTTP/2协议,支持多种编程语言。它采用Protocol Buffers作为默认数据格式,提供四种通信模式:一元RPC、服务器流式、客户端流式和双向流式。相比REST,gRPC具有更高的性能(二进制编码)、更低的延迟和原生流式支持,但浏览器兼容性较差。在C++中,gRPC可通过同步/异步API实现各类RPC调用,支持TLS加密、元数据传递和负载均衡。性能测试表明,gRPC在序列化速度和网络传输效率上显著优于JSON,特别适合微服务间通信等高性能场景。
2025-08-15 09:02:46
1229
原创 一文读懂Keras:深度学习框架详解
Keras是一个开源的深度学习框架,最初由François Chollet开发并于2015年发布。它设计为高度模块化、用户友好且可扩展,主要用于快速构建和训练深度学习模型。Keras的核心思想是简化神经网络模型的开发流程,同时保持灵活性。
2025-08-12 10:27:42
1794
原创 Vi命令速查手册:高效编辑必备
Vi 是 Unix/Linux 系统中最常用的文本编辑器之一,分为命令模式(Command Mode)、插入模式(Insert Mode)和末行模式(Last Line Mode)。如果需要更详细的 Vi 命令或图表示例,可以进一步查阅 Unix/Linux 系统手册或在线教程。
2025-08-12 10:17:43
445
原创 Java AI生成长篇小说的实用
本文提供JavaAI生成长篇小说的实用示例,涵盖文本生成、角色对话、章节大纲、多风格切换等场景,并介绍5种Netflix风格推荐算法的Java实现。小说生成示例包括基础框架搭建、多语言支持、敏感内容过滤等功能;推荐算法部分则演示了协同过滤、矩阵分解、混合推荐等核心技术的代码实现。这些方案均采用现代AI技术栈(如GPT-3、HuggingFace等),强调在实际应用中需结合人工审核、数据一致性和算法优化。完整方案既包含创意生成工具,也整合了推荐系统的工程实现要点。
2025-08-11 22:58:01
1118
原创 C++高效分析JVM实战指南
本文摘要: 本文系统介绍了多种编程工具和技术在AI性能分析与开发中的应用。主要内容包括:1)Visual Studio Profiler、Intel VTune等性能分析工具的使用;2)C++代码优化技术如SIMD向量化和内存布局优化;3)C++与JVM交互方法及垃圾回收统计实现;4)Java实例演示基础语法到AI应用开发;5)基于Java的机器学习、NLP和计算机视觉实现方案。文章提供了从底层性能调优到上层应用开发的全套技术方案,涵盖C++/Java两种语言环境,并附有详细的代码示例,为AI系统开发提供了
2025-08-11 09:26:17
973
原创 Java24新特性前瞻:升级亮点
Java 24 新特性前瞻摘要(150字) Java 24(假设版本)预计集成多项创新:1. 语法增强:扩展模式匹配(嵌套对象解构)、原生字符串模板、隐式类简化;2. 性能优化:虚拟线程调度改进、值类型(Valhalla)减少内存开销,ZGC/Shenandoah垃圾回收器强化;3. API扩展:Stream新增gather操作,数学库支持向量计算,HTTP/3客户端;4. 安全与工具:抗量子加密算法、原生镜像构建支持。部分特性延续Java 21(如结构化并发),部分为预测(如JSON内置处理)。适用于AI
2025-08-10 12:15:24
772
原创 Java实战:Databend向量索引加速AI应用
本文介绍了在Java中利用Databend向量索引加速AI应用的方法,主要包括:1. 通过向量化查询、近似最近邻搜索和批量插入优化数据处理性能;2. 结合传统SQL与向量搜索实现混合查询;3. 使用不同索引类型进行性能对比测试;4. 实现向量聚合分析、动态索引调整和并行扫描等高级功能。同时介绍了华为开发者空间与DeepSeek、Dify的集成方案,以及向量化执行在数值计算、图像处理等领域的应用实例。最后概述了Java性能分析工具的使用方法,重点讲解了Intel VTune Profiler在CPU热点、内存
2025-08-09 08:33:44
859
原创 PyTorch深度学习实战:从入门到精通
PyTorch深度学习实例教程摘要 本文提供了一系列PyTorch深度学习实例,从基础操作到高级应用,涵盖多种任务类型: 基础操作 张量创建与运算 自动微分实现 线性回归示例 常见网络结构 LeNet-5复现 AlexNet实现 UNet语义分割 核心算法 逻辑回归与BCELoss 生成对抗网络(GAN) 强化学习(DQN/策略梯度) 进阶技巧 混合精度训练 分布式训练(DDP) 模型剪枝与量化 ONNX模型导出 应用场景 图像分类(花卉/鸟类) 文本处理(Word2Vec/LSTM)
2025-08-09 07:52:38
715
原创 Mac/Windows跨平台PDF与AI高效解决方案
摘要:本文系统介绍了AI技术在跨平台PDF处理中的创新应用,涵盖Mac/Windows环境下的10大核心场景和20个拓展功能。智能分类、多语言翻译、合同风险标记等场景展示了NLP与OCR技术的深度整合,而电子签名验证、表格提取等功能则体现了计算机视觉的应用价值。技术实现上,重点采用Electron框架保障跨平台兼容性,结合CoreML/DirectML加速本地运算,并推荐了Adobe Acrobat、PDFelement等主流工具。Office生产力工具部分则聚焦Word排版、Excel数据分析和PPT动态
2025-08-07 20:41:39
795
原创 法语C++学习全攻略:书籍课程到实战
摘要:本文推荐法语版C++学习资源,包括适合初学者的书籍《Apprendre à programmer avec C++》、在线课程平台OpenClassrooms和Udemy的法语课程,以及编程练习社区France-IOI。同时指出法语与汉语版C++的核心区别主要在于文档和关键字的本地化,而语法和功能完全一致。文中提供了30个C++结合Web技术的示例代码框架,涵盖动态内容生成、数据库集成和用户会话管理等功能,并建议结合Wt框架、SQLite等技术栈构建完整法语教学项目。所有示例需根据实际需求扩展错误处理
2025-08-07 15:10:34
3718
原创 基于C++深度学习 (NCNN、MNN、OpenVINO)OpenCV 等实践
摘要: Moki是一个多义词,涵盖科技公司(物联网设备管理)、游戏角色(《塞尔达传说》中的精灵生物)以及C++框架等多种含义。在技术领域,C++Moki是一个轻量级网络应用框架,支持异步I/O和事件驱动模型,适用于服务器开发。同时,我们还介绍了基于C++的深度学习模型部署方案(如NCNN、MNN、OpenVINO)、OpenCV图像处理、PCL点云操作、FFTW信号处理等技术实例,以及SSD目标检测模型的实现方法。这些内容覆盖了从基础编程到高级应用的多领域技术实践,为开发者提供了全面的参考指南。
2025-08-07 15:04:09
1161
原创 LSTM预测股市:智能投资新趋势
摘要:本文介绍了LSTM在股市预测中的应用,包括单变量和多变量预测方法,以及如何结合情感分析增强模型性能。文章还讨论了高频交易预测、模型优化策略和实际案例,同时指出市场不可预测性等局限性。此外,提供了C++集成AlphaVantage API的代码框架,涵盖股票数据获取、外汇解析和错误处理等技术细节。
2025-08-07 14:35:40
808
【Rust后端开发】基于Actix-web框架的企业级管理系统实现:CRM、MIS及供应商管理全栈解决方案使用Rust编程
2025-06-22
django.pdf
2019-12-24
pandas1.5.2 Html文档资料
2022-12-07
testrail5.7-6.6-api-master
2020-11-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅