【 题目描述】
小 Q 有 X 首长度为 A 的不同的歌和 Y 首长度为 B 的不同的歌,现在小 Q 想用这些歌组成一个
总长度正好为 K 的歌单,每首歌最多只能在歌单中出现一次,在不考虑歌单内歌曲的先后顺序的情况下,
请问有多少种组成歌单的方法。
输入描述:
每个输入包含一个测试用例。
每个测试用例的第一行包含一个整数,表示歌单的总长度 K(1<=K<=1000)。
接下来的一行包含四个正整数,分别表示歌的第一种长度 A(A<=10)和数量 X(X<=100)以及歌的第二种长度
B(B<=10)和数量 Y(Y<=100)。保证 A 不等于 B。
输出描述:
输出一个整数,表示组成歌单的方法取模。因为答案可能会很大,输出对 1000000007 取模的结果。
输入示例:
5
2 3 3 3
输出示例:
9
解题思路:分析题目可以知道此题为一道排列问题,要凑成总长度为K的歌单,可以从X首长度为A的歌曲中取a首歌,从Y首长度为B的歌曲中取b首歌,并且此时有等式:
并且a、b的大小分别不能大于X、Y。
所以此时的种类数目就等于。
问题关键在于排列数如何得到,并且如何在代码块中防止数据过大溢出,也就是说在什么地方对1000000007取模?
part_1:排列数如何得到?
利用组合数公式
#include<iostream>
#include<cstring>
using namespace std;
long long c[105][105];
memset(c,0,sizeof(c));
//在处理组合数时就对其进行取模操作
const int mod = 1000000007;
void init() {
c[0][0] = 1;
for(int i = 1; i <= 100; i++) {
c[i][0] = 1;
for(int j = 1; j <= 100; j++)
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;
}
}
part_2:part_1中在组合数中就进行了部分的取模操作,之后还有在种类加和处:
int ans = 0;
for(int i = 0; i<=X ;i++)
{
if(K-A*i>=0&&(K-A*i)%B==0&&(K-A*i)/B<=Y)
{
//双重取余操作保证了结果是mod的余数
ans =(ans + (c[X][i]*c[Y][(K-A*i)/B]) % mod) % mod
}
}
题目来源:牛客网