机器学习
文章平均质量分 69
柯努力
这个作者很懒,什么都没留下…
展开
-
第五章 关联分析-apriori算法知识点详细总结
关联分析及apriori算法代码实现原创 2022-06-14 18:13:32 · 734 阅读 · 1 评论 -
python 基本语法numpy库使用
1、np.concatenate : 数组拼接例如: np.concatenate([[1,2,3],[4,5,6]],axis=0) # 默认情况下,axis=0可以不写# out: array([1, 2, 3, 4, 5, 6])2、np.diff : 计算离散差值例如:np.diff([2,4,1,5,6])# Out[5]: array([ 2, -3, 4, 1])...原创 2021-09-01 15:08:00 · 171 阅读 · 0 评论 -
python gensim AttributeError: ‘Doc2Vec‘ object has no attribute ‘dv‘
python3gensim 4.0.1我的代码:Doc2Vec加载doc2vec模型文件的时候报错了from gensim.models import Doc2Vecdoc2vec_model = Doc2Vec.load('data/doc2vec.model')“AttributeError: 'Doc2Vec' object has no attribute 'dv'”解决方法:可能是最新版本的一些问题,换版本!!!我把gensim卸载了 pip uninstal.原创 2021-08-27 17:41:24 · 3250 阅读 · 1 评论 -
第四章 分类模型-支持向量机SVM知识点详细总结
机器学习算法系列第一章 Python/Spark分类模型-逻辑回归知识点详细总结第二章分类模型-决策树知识点详细总结第三章分类模型-随机森林知识点详细总结第四章分类模型-支持向量机SVM知识点详细总结目录机器学习算法系列前言一、SVM简介二、基本原理三、实现步骤四、求解模型五、参数说明六、SVM算法的优缺点七、应用领域八、模型代码前言本章主要讲解SVM的基本原理、实现步骤、模型参数说明及优缺点等。一、SVM简介......原创 2021-05-10 17:41:24 · 2881 阅读 · 1 评论 -
第三章 分类模型-随机森林知识点详细总结
机器学习算法系列第一章 Python/Spark分类模型-逻辑回归知识点详细总结第二章分类模型-决策树知识点详细总结目录机器学习算法系列前言二、了解什么是集成学习三、随机森林工作原理(构建过程)四、特征重要性五、随机森林分类模型参数说明六、随机森林优缺点七、应用领域八、随机森林代码前言 本章节内容主要介绍随机森林,集成学习、随机森林工作原理、特征重要性、随机森林参数说明并附上部分代码、随机森林优缺点。一、随机森林简介...原创 2021-03-29 17:54:57 · 2966 阅读 · 0 评论 -
第二章 分类模型-决策树知识点详细总结
机器学习算法系列目录机器学习算法系列前言二、决策树的生成原则三、信息增益四、分类条件选择五、停止规则六、决策树预剪枝和后剪枝七、决策树分类模型参数说明八、决策树优缺点九、决策树代码前言本章节内容主要介绍决策树,包括决策树简介、生成规则、信息增益、决策树分类条件选择、决策树预剪枝和后剪枝、决策树参数说明并附上部分代码、决策树优缺点。一、决策树简介决策树是一种树形结构,树内部每个节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶子节点代表.原创 2021-03-23 13:54:45 · 2750 阅读 · 1 评论