spring boot + hibernate 多数据源(XML)

   spring boot推荐使用注解方式,不过个人对数据源等固定配置仍然倾向于xml来做。总的来说,注解和xml各有优势,具体采用哪种取决于实际应用场景。

一) spring boot 入口类

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.ImportResource;

@SpringBootApplication
@ComponentScan(basePackages = "com.magic.acme.assist")
@ImportResource({ "classpath:META-INF/spring/applicationContext*.xml" })
public class AssistApplication {

    public static void main(String[] args) {
        SpringApplication.run(AssistApplication.class, args);
    }
}

二)properties配置参数

## DB properties:
spring.datasource.kit.url=jdbc:postgresql://192.168.3.168:5432/kit
spring.datasource.kit.username=jetty
spring.datasource.kit.password=jetty
spring.datasource.kit.driverClassName=org.postgresql.Driver
spring.datasource.kit.initialSize=10
spring.datasource.kit.minIdle=10
spring.datasource.kit.maxActive=100
spring.datasource.kit.dialect=org.hibernate.dialect.PostgreSQLDialect


spring.datasource.xtt.url=jdbc:postgresql://192.168.3.168:5432/otmsxtt
spring.datasource.xtt.username=jetty
spring.datasource.xtt.password=jetty
spring.datasource.xtt.driverClassName=org.postgresql.Driver
spring.datasource.xtt.initialSize=10
spring.datasource.xtt.minIdle=10
spring.datasource.xtt.maxActive=100
spring.datasource.xtt.dialect=org.hibernate.dialect.PostgreSQLDialect

三)applicationContext.xml 基础配置

<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:mvc="http://www.springframework.org/schema/mvc"
       xmlns:context="http://www.springframework.org/schema/context"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
       http://www.springframework.org/schema/beans/spring-beans.xsd
       http://www.springframework.org/schema/context
       http://www.springframework.org/schema/context/spring-context.xsd
       http://www.springframework.org/schema/mvc
       http://www.springframework.org/schema/mvc/spring-mvc-4.0.xsd">

    <!--load properties-->
    <context:property-placeholder location="classpath:META-INF/spring/application.properties" file-encoding="UTF-8"/>
    <bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource">
        <property name="defaultEncoding" value="UTF-8"></property>
        <property name="basenames">
            <list>
                <value>META-INF/locale/message</value>
            </list>
        </property>
    </bean>

    <bean id="localeResolver" class="org.springframework.web.servlet.i18n.CookieLocaleResolver">
        <property name="cookieMaxAge" value="604800"/>
        <property name="defaultLocale" value="zh_CN"/>
        <property name="cookieName" value="language"></property>
    </bean>

    <!--数据绑定支持, 如@Valid支持 -->
    <mvc:annotation-driven validator="validator">
    </mvc:annotation-driven>

    <bean id="validator" class="org.springframework.validation.beanvalidation.LocalValidatorFactoryBean">
        <property name="providerClass" value="org.hibernate.validator.HibernateValidator"/>
        <property name="validationMessageSource" ref="messageSource"/>
    </bean>
</beans>


四)applicationContext_datasource.xml数据源配置 (多数据源时必须指定一个首选项  primary="true")

<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:mvc="http://www.springframework.org/schema/mvc"
       xmlns:context="http://www.springframework.org/schema/context"
       xmlns:aop="http://www.springframework.org/schema/aop"
       xmlns:jpa="http://www.springframework.org/schema/data/jpa"
       xmlns:tx="http://www.springframework.org/schema/tx"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
       http://www.springframework.org/schema/beans/spring-beans.xsd
       http://www.springframework.org/schema/context
       http://www.springframework.org/schema/context/spring-context.xsd
       http://www.springframework.org/schema/mvc
       http://www.springframework.org/schema/mvc/spring-mvc.xsd
       http://www.springframework.org/schema/data/jpa
       http://www.springframework.org/schema/data/jpa/spring-jpa-1.3.xsd
       http://www.springframework.org/schema/tx
       http://www.springframework.org/schema/tx/spring-tx.xsd">

    <!--指定实现JPA的适配器-->
    <bean id="hibernateJpaVendorAdapter" class="org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter"></bean>

    <!--DataSource kit-->
    <bean id="dataSourceKit" class="org.apache.tomcat.jdbc.pool.DataSource" destroy-method="close" primary="true">
        <property name="driverClassName" value="${spring.datasource.kit.driverClassName}"/>
        <property name="url" value="${spring.datasource.kit.url}"/>
        <property name="username" value="${spring.datasource.kit.username}"/>
        <property name="password" value="${spring.datasource.kit.password}"/>
        <property name="initialSize" value="${spring.datasource.kit.initialSize}"/>
        <property name="maxActive" value="${spring.datasource.kit.maxActive}"/>
        <property name="minIdle" value="${spring.datasource.kit.minIdle}"/>
    </bean>
    <bean id="entityManagerFactoryKit" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"
          primary="true">
        <property name="dataSource" ref="dataSourceKit"/>
        <property name="jpaVendorAdapter" ref="hibernateJpaVendorAdapter"/>
        <property name="jpaProperties">
            <props>
                <prop key="hibernate.dialect">${spring.datasource.kit.dialect}</prop>
                <prop key="hibernate.show_sql">true</prop>
                <prop key="hibernate.format_sql">true</prop>
                <prop key="hibernate.hbm2ddl.auto">none</prop>
                <prop key="hibernate.autoReconnect">true</prop>
            </props>
        </property>
        <property name="packagesToScan" value="com.magic.acme.assist.jpa.kit.entity"/>
    </bean>
    <bean id="transactionManagerKit" class="org.springframework.orm.jpa.JpaTransactionManager" primary="true">
        <property name="entityManagerFactory" ref="entityManagerFactoryKit"></property>
    </bean>

    <!--DataSource xtt-->
    <bean id="dataSourceXtt" class="org.apache.tomcat.jdbc.pool.DataSource" destroy-method="close">
        <property name="driverClassName" value="${spring.datasource.xtt.driverClassName}"/>
        <property name="url" value="${spring.datasource.xtt.url}"/>
        <property name="username" value="${spring.datasource.xtt.username}"/>
        <property name="password" value="${spring.datasource.xtt.password}"/>
        <property name="initialSize" value="${spring.datasource.xtt.initialSize}"/>
        <property name="maxActive" value="${spring.datasource.xtt.maxActive}"/>
        <property name="minIdle" value="${spring.datasource.xtt.minIdle}"/>
    </bean>
    <bean id="entityManagerFactoryXtt" class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
        <property name="dataSource" ref="dataSourceXtt"/>
        <property name="jpaVendorAdapter" ref="hibernateJpaVendorAdapter"/>
        <property name="jpaProperties">
            <props>
                <prop key="hibernate.dialect">${spring.datasource.xtt.dialect}</prop>
                <prop key="hibernate.show_sql">true</prop>
                <prop key="hibernate.format_sql">true</prop>
                <prop key="hibernate.hbm2ddl.auto">none</prop>
                <prop key="hibernate.autoReconnect">true</prop>
            </props>
        </property>
        <property name="packagesToScan" value="com.magic.acme.assist.jpa.xtt.entity"/>
    </bean>
    <bean id="transactionManagerXtt" class="org.springframework.orm.jpa.JpaTransactionManager">
        <property name="entityManagerFactory" ref="entityManagerFactoryXtt"></property>
    </bean>

    <!--JPA reponsitories-->
    <jpa:repositories base-package="com.magic.acme.assist.jpa.kit.repository"
                      entity-manager-factory-ref="entityManagerFactoryKit"
                      transaction-manager-ref="transactionManagerKit"></jpa:repositories>
    <jpa:repositories base-package="com.magic.acme.assist.jpa.xtt.repository"
                      entity-manager-factory-ref="entityManagerFactoryXtt"
                      transaction-manager-ref="transactionManagerXtt"></jpa:repositories>

    <!-- 启用 annotation事务-->
    <tx:annotation-driven transaction-manager="transactionManagerKit"/>
    <tx:annotation-driven transaction-manager="transactionManagerXtt"/>
</beans>

五)log4j2配置

<?xml version="1.0" encoding="UTF-8"?>
<configuration status="error">
    <!-- 先定义所有的appender -->
    <appenders>
        <!--这个输出控制台的配置 -->
        <Console name="Console" target="SYSTEM_OUT">
            <!--控制台只输出level及以上级别的信息(onMatch),其他的直接拒绝(onMismatch) -->
            <ThresholdFilter level="INFO" onMatch="ACCEPT" onMismatch="DENY"/>
            <!--这个都知道是输出日志的格式 -->
            <PatternLayout pattern="%d{HH:mm:ss.SSS} %-5level %class{36} %L %M - %msg%xEx%n"/>
        </Console>

        <Console name="SQLConsole" target="SYSTEM_OUT">
            <!--控制台只输出level及以上级别的信息(onMatch),其他的直接拒绝(onMismatch) -->
            <ThresholdFilter level="TRACE" onMatch="ACCEPT" onMismatch="DENY"/>
            <!--这个都知道是输出日志的格式 -->
            <PatternLayout pattern="%d{HH:mm:ss.SSS} %-5level %class{36} %L %M - %msg%xEx%n"/>
        </Console>

        <!--文件会打印出所有信息,这个log每次运行程序会自动清空,由append属性决定,这个也挺有用的,适合临时测试用 -->
        <!--append为TRUE表示消息增加到指定文件中,false表示消息覆盖指定的文件内容,默认值是true -->
        <File name="log" fileName="log/test.log" append="false">
            <PatternLayout pattern="%d{HH:mm:ss.SSS} %-5level %class{36} %L %M - %msg%xEx%n"/>
        </File>

        <!-- 添加过滤器ThresholdFilter,可以有选择的输出某个级别以上的类别  onMatch="ACCEPT" onMismatch="DENY"意思是匹配就接受,否则直接拒绝  -->
        <File name="ERROR" fileName="logs/error.log">
            <ThresholdFilter level="ERROR" onMatch="ACCEPT" onMismatch="DENY"/>
            <PatternLayout pattern="%d{yyyy.MM.dd 'at' HH:mm:ss z} %-5level %class{36} %L %M - %msg%xEx%n"/>
        </File>

        <!--这个会打印出所有的信息,每次大小超过size,则这size大小的日志会自动存入按年份-月份建立的文件夹下面并进行压缩,作为存档 -->
        <RollingFile name="RollingFile" fileName="logs/web.log" filePattern="logs/$${date:yyyy-MM}/%d{yyyy-MM-dd}-%i.log.gz">
            <ThresholdFilter level="INFO" onMatch="ACCEPT" onMismatch="DENY"/>
            <PatternLayout pattern="%d{yyyy-MM-dd 'at' HH:mm:ss z} %-5level %class{36} %L %M - %msg%xEx%n"/>
            <SizeBasedTriggeringPolicy size="10MB"/>
        </RollingFile>
    </appenders>

    <!-- 然后定义logger,只有定义了logger并引入的appender,appender才会生效 -->
    <loggers>
        <logger name="org.hibernate.type.descriptor.sql.BasicBinder" level = "INFO">
            <appender-ref ref="SQLConsole"/>
        </logger>
        <!--建立一个默认的root的logger -->
        <root level="INFO">
            <!--<appender-ref ref="RollingFile"/>-->
            <appender-ref ref="Console"/>
            <appender-ref ref="ERROR"/>
            <!--<appender-ref ref="log"/>-->
        </root>
    </loggers>
</configuration>  

六)pom.xml - maven

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.magic.acme</groupId>
    <artifactId>assist</artifactId>
    <version>1.0-SNAPSHOT</version>
    <packaging>war</packaging>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>1.5.1.RELEASE</version>
        <relativePath/>
    </parent>

    <properties>
        <postgres.version>8.4-702.jdbc4</postgres.version>
        <fastjson.version>1.2.16</fastjson.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-actuator</artifactId>
            <exclusions>
                <exclusion>
                    <groupId>org.springframework.boot</groupId>
                    <artifactId>spring-boot-starter-logging</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-websocket</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-log4j2</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-amqp</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-security</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-jpa</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-websocket</artifactId>
        </dependency>
        <dependency>
            <groupId>joda-time</groupId>
            <artifactId>joda-time</artifactId>
        </dependency>
        <dependency>
            <groupId>postgresql</groupId>
            <artifactId>postgresql</artifactId>
            <version>${postgres.version}</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>${fastjson.version}</version>
        </dependency>
    </dependencies>

    <build>
        <finalName>${project.artifactId}</finalName>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <configuration>
                    <fork>true</fork>
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-war-plugin</artifactId>
                <version>2.4</version>
                <configuration>
                    <failOnMissingWebXml>false</failOnMissingWebXml>
                </configuration>
            </plugin>
        </plugins>
    </build>

</project>


### 回答1: 下面是一个简单的Spring Boot + Spring Batch + Hibernate + Quartz的批量读文件写数据的例子: 1. 创建Spring Boot项目 首先,我们需要创建一个Spring Boot项目。可以使用Spring Initializr或者手动创建一个Maven项目。在pom.xml文件中添加相关依赖: ```xml <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-batch</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-jpa</artifactId> </dependency> <dependency> <groupId>org.quartz-scheduler</groupId> <artifactId>quartz</artifactId> <version>2.3.0</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-quartz</artifactId> </dependency> </dependencies> ``` 2. 创建Job 接下来,我们要创建一个Job。Job是一个执行具体任务的实体,可以包含一个或多个Step。 ```java @Configuration public class JobConfiguration { @Autowired private JobBuilderFactory jobBuilderFactory; @Autowired private StepBuilderFactory stepBuilderFactory; @Autowired private DataSource dataSource; @Bean public FlatFileItemReader<Person> reader() { FlatFileItemReader<Person> reader = new FlatFileItemReader<>(); reader.setResource(new ClassPathResource("persons.csv")); reader.setLineMapper(new DefaultLineMapper<Person>() {{ setLineTokenizer(new DelimitedLineTokenizer() {{ setNames(new String[]{"firstName", "lastName", "email"}); }}); setFieldSetMapper(new BeanWrapperFieldSetMapper<Person>() {{ setTargetType(Person.class); }}); }}); return reader; } @Bean public PersonItemProcessor processor() { return new PersonItemProcessor(); } @Bean public JpaItemWriter<Person> writer() { JpaItemWriter<Person> writer = new JpaItemWriter<>(); writer.setEntityManagerFactory(entityManagerFactory().getObject()); return writer; } @Bean public Job importUserJob(JobCompletionNotificationListener listener) { return jobBuilderFactory.get("importUserJob") .incrementer(new RunIdIncrementer()) .listener(listener) .flow(step1()) .end() .build(); } @Bean public Step step1() { return stepBuilderFactory.get("step1") .<Person, Person>chunk(10) .reader(reader()) .processor(processor()) .writer(writer()) .build(); } @Bean public LocalContainerEntityManagerFactoryBean entityManagerFactory() { LocalContainerEntityManagerFactoryBean em = new LocalContainerEntityManagerFactoryBean(); em.setDataSource(dataSource); em.setPackagesToScan("com.example.demo"); em.setJpaVendorAdapter(new HibernateJpaVendorAdapter()); em.setJpaProperties(additionalProperties()); return em; } private Properties additionalProperties() { Properties properties = new Properties(); properties.setProperty("hibernate.hbm2ddl.auto", "create-drop"); properties.setProperty("hibernate.dialect", "org.hibernate.dialect.MySQL5Dialect"); return properties; } } ``` Job主要包含以下几个部分: - reader:读取文件中的数据 - processor:处理每一条数据 - writer:将数据写入数据库 - step:定义一个Step - job:定义一个Job,包含一个或多个Step 3. 创建任务调度 接下来,我们需要创建一个任务调度,使用Quartz来实现。我们可以在应用启动时,自动启动任务调度。以下是一个简单的任务调度配置: ```java @Configuration public class SchedulerConfiguration { @Autowired private JobLauncher jobLauncher; @Autowired private Job importUserJob; @Bean public JobDetail jobDetail() { return JobBuilder.newJob().ofType(SpringJobAdapter.class) .storeDurably() .withIdentity("importUserJob") .withDescription("Invoke Spring batch from quartz") .build(); } @Bean public Trigger trigger(JobDetail job) { SimpleScheduleBuilder scheduleBuilder = SimpleScheduleBuilder.simpleSchedule() .withIntervalInSeconds(60) .repeatForever(); return TriggerBuilder.newTrigger().forJob(job) .withIdentity("importUserTrigger") .withDescription("Simple trigger") .withSchedule(scheduleBuilder) .build(); } @Bean public Scheduler scheduler(Trigger trigger, JobDetail job) throws SchedulerException { SchedulerFactory factory = new StdSchedulerFactory(); Scheduler scheduler = factory.getScheduler(); scheduler.scheduleJob(job, trigger); scheduler.setJobFactory(springBeanJobFactory()); scheduler.start(); return scheduler; } @Bean public SpringBeanJobFactory springBeanJobFactory() { return new AutowiringSpringBeanJobFactory(); } public class AutowiringSpringBeanJobFactory extends SpringBeanJobFactory implements ApplicationContextAware { private transient AutowireCapableBeanFactory beanFactory; @Override public void setApplicationContext(ApplicationContext context) { beanFactory = context.getAutowireCapableBeanFactory(); } @Override protected Object createJobInstance(TriggerFiredBundle bundle) throws Exception { final Object job = super.createJobInstance(bundle); beanFactory.autowireBean(job); return job; } } } ``` 这里我们使用了Spring JobAdapter来将Spring Batch的Job包装成Quartz Job。同时,我们也定义了一个Simple Trigger,每隔60秒执行一次。 4. 编写数据处理逻辑 最后,我们需要编写具体的数据处理逻辑。这里我们简单的将读取到的Person数据插入到数据库中。以下是一个简单的数据处理类: ```java public class PersonItemProcessor implements ItemProcessor<Person, Person> { @Override public Person process(Person person) throws Exception { return person; } } ``` 5. 创建数据模型 在这个例子中,我们需要处理的数据是Person,我们需要创建一个Person类来描述数据模型: ```java @Entity public class Person { @Id @GeneratedValue(strategy = GenerationType.IDENTITY) private Long id; private String firstName; private String lastName; private String email; // getter and setter } ``` 6. 创建文件 最后,我们需要创建一个csv文件,用于存储测试数据。文件名为persons.csv,内容如下: ```csv firstName,lastName,email John,Doe,john.doe@example.com Jane,Doe,jane.doe@example.com Bob,Smith,bob.smith@example.com Alice,Smith,alice.smith@example.com ``` 7. 运行程序 完成以上步骤后,我们可以运行程序。当程序运行时,任务调度会定时执行任务,将csv文件中的数据插入到数据库中。 总的来说,这是一个简单的Spring Boot + Spring Batch + Hibernate + Quartz的批量读文件写数据的例子。通过这个例子,可以熟悉Spring Batch的基本使用方法,并了解如何使用Quartz实现任务调度。 ### 回答2: Spring Boot是一种快速开发应用程序的框架,Spring Batch是Spring Boot的子项目,用于处理大量数据的批量处理任务。在这个用例中,我们可以使用Spring BootSpring Batch、Hibernate和Quartz来实现简单的批量读取文件并写入数据。 首先,我们需要在Spring Boot项目中引入Spring Batch和Hibernate的依赖。然后,创建一个包含读取文件和写入数据的批处理任务。 使用Spring Batch的ItemReader接口从文件中逐行读取数据。你可以使用FlatFileItemReader类并配置文件路径、行解析器等属性来实现这一步骤。 接下来,使用Hibernate的Entity类和Repository来定义和操作数据表。根据业务需求,创建一个实体类并使用JPA注解配置。然后,创建一个Repository接口,用于查询和保存数据。 在批处理任务的写入步骤中,我们可以使用Hibernate的Session来保存数据。通过调用Repository的save方法,将读取到的数据写入数据库。 最后,使用Quartz来触发批处理任务。可以配置Quartz的定时任务,按照一定的时间间隔或特定时间点触发批处理任务的执行。 在整个过程中,我们需要根据实际需求进行配置和开发,确保数据的正确读取和写入。可以使用Spring Boot自带的自动配置或者手动配置来实现以上功能。 综上所述,我们可以使用Spring BootSpring Batch、Hibernate和Quartz来实现简单的批量读取文件并写入数据的用例。这个用例可以用来处理大量数据的批处理任务,实现数据的批量处理和定时执行。 ### 回答3: Spring Boot是一个用于创建独立的、基于Spring的生产级应用程序的框架。它简化了Spring应用程序的配置和部署过程,并提供了一套强大的开发工具和约定,使开发人员能够更快地构建应用程序。 Spring Batch是一个用于批量处理的框架。它提供了一种简单而强大的方式来处理大量的数据,并允许我们以可靠的方式处理失败和重试。它还提供了许多批处理作业开发和管理的功能,如读取数据源、处理数据并将结果写入目标数据源。 Hibernate是一个用于对象关系映射(ORM)的框架。它简化了Java应用程序与关系数据库之间的交互,并提供了一个对象导向的方式来操作数据。它提供了一种将对象持久化到数据库中的简单方式,并为开发人员提供了一套强大的查询语言(HQL)来执行复杂的数据库查询操作。 Quartz是一个用于任务调度的框架。它允许我们按照预定的时间间隔或时间短划进行任务调度。它还提供了一种强大的任务管理和监控机制,可以处理并发任务,并支持持久化任务调度信息。 下面是一个简单的批量读取文件并将数据写入数据库的示例: 1. 使用Spring Boot创建一个新的Web应用程序。 2. 导入Spring Batch、Hibernate和Quartz的依赖项。 3. 创建一个包含文件读取、数据处理和数据写入的Spring Batch作业。 4. 在作业中使用Hibernate作为数据源读取文件的内容。 5. 配置Quartz来调度作业的执行。 6. 在作业中实现一个写入数据库的处理器。 7. 配置Hibernate来将处理后的数据写入数据库。 8. 运行应用程序并观察任务按计划执行,并且文件中的数据被正确地写入数据库。 这个示例演示了如何使用Spring BootSpring Batch、Hibernate和Quartz来构建一个简单的批量处理应用程序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值