Codeforces 390C Inna and Candy Boxes(dp)

题目链接:Codeforces 390C Inna and Candy Boxes


题目大意:给出n,k和w,然后给出n个礼物盒的状况,‘1’表示有糖果,‘0’表示没有糖果,然后给出w次询问,每次询问将[l,r]区间变成标准情况需要几步,标准情况为l-1+k,l-1+2k....的盒子有糖果,其他在该区间上的盒子没有糖果。


解题思路:因为k不会大于10,所以可以先进行预先处理,将以0~k为起始的位置进行处理,dp[i][j]表示说以i为开头,区间[1,j]需要几步。然后特殊处理一下左区间的边界。


#include <stdio.h>
#include <string.h>
#include <algorithm>

using namespace std;
const int N = 100005;

int n, k, w, s[15][N];
char str[N];

bool judge(int x, int y) {
	if ((y - x + k + 1) % k == 0 && str[y-1] == '0') return true;
	if ((y - x + k + 1) % k != 0 && str[y-1] == '1') return true;
	return false;
}

void init () {
	memset(s, 0, sizeof(s));

	scanf("%d%d%d%s", &n, &k, &w, str);
	int len = strlen(str);

	for (int i = 0; i < k; i++) {
		for (int j = i+1; j <= len; j++) {
			s[i][j] = s[i][j-1];	
			if (judge(i, j)) s[i][j]++;
		}
	}
}

int handle(int x) {
	if (k == 1) {
		if (str[x-1] == '0') return 1;
	} else {
		if (str[x-1] == '1') return 1;
	}
	return 0;
}

void solve () {
	int x, y;
	for (int i = 0; i < w; i++) {
		scanf("%d%d", &x, &y);
		int t = x % k;
		printf("%d\n", s[t][y] - s[t][x] + handle(x));
	}
}

int main () {
	init ();
	solve();
	return 0;
}


引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值