题目连接:Leetcode 037 Sudoku Solver
解题思路:预处理出每个'.'可能的数值,然后处理一些直观的解,比如某个位置只有一种可能的数字;或者是它所在的一行,一列或者块,只有它可能为这个数字。
剩下的位置都是有多种可能,它们的取值和其它位置相关联。这里的解决方法是暴力求解,枚举每个位置的值,然后递归,直到所有位置都被赋值并且没有冲突时,答案可知。
class Solution {
public:
bool check(int x, int y, char c, vector<vector<char>>& board) {
for (int k = 0; k < 9; k++) {
if (board[x][k] == c) return false;
if (board[k][y] == c) return false;
int i = x/3*3+k/3, j = y/3*3+k%3;
if (board[i][j] == c) return false;
}
return true;
}
bool dfs(int x, int y, vector<vector<char>>& board) {
while (x < 9 && board[x][y] != '.') {
y++;
if (y == 9) { y = 0; x++; }
}
if (x >= 9) return true;
for (int k = 0; k < 9; k++) {
if (check(x, y, '1' + k, board) == false) continue;
board[x][y] = '1' + k;
if (dfs(x, y, board)) return true;
board[x][y] = '.';
}
return false;
}
void solveSudoku(vector<vector<char>>& board) {
int n = 9, c[9];
set<int> G[9][9];
// Find the possible value in '.';
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (board[i][j] == '.') {
for (int k = 0; k < n; k++) c[k] = 0;
for (int k = 0; k < n; k++) {
if (board[i][k] != '.') c[board[i][k]-'1'] = 1;
if (board[k][j] != '.') c[board[k][j]-'1'] = 1;
int x = i / 3 * 3 + k / 3, y = j / 3 * 3 + k % 3;
if (board[x][y] != '.') c[board[x][y]-'1'] = 1;
}
for (int k = 0; k < n; k++)
if (c[k] == 0) G[i][j].insert(k);
}
}
}
bool change = true;
while (change) {
change = false;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (board[i][j] != '.') continue;
if (G[i][j].size() == 1) {
set<int>::iterator iter = G[i][j].begin();
board[i][j] = '1' + *iter;
} else {
bool only;
for (set<int>::iterator iter = G[i][j].begin(); iter != G[i][j].end(); iter++) {
// Row only
only = true;
for (int k = 0; k < n; k++) {
if (board[i][k] != '.' || k == j) continue;
if (G[i][k].count(*iter)) { only = false; break; }
}
if (only) { board[i][j] = '1' + *iter; break; }
// Column only
only = true;
for (int k = 0; k < n; k++) {
if (board[k][j] != '.' || k == i) continue;
if (G[k][j].count(*iter)) { only = false; break; }
}
if (only) { board[i][j] = '1' + *iter; break; }
only = true;
for (int k = 0; k < n; k++) {
int x = i/3*3 + k/3, y=j/3*3 + k%3;
if (board[x][y] != '.' || (x == i && y == j)) continue;
if (G[x][y].count(*iter)) { only = false; break; }
}
if (only) { board[i][j] = '1' + *iter; break; }
}
}
// Remove
if (board[i][j] != '.') {
change = true;
int f = board[i][j] - '1';
for (int k = 0; k < n; k++) {
if (board[i][k] == '.') G[i][k].erase(f);
if (board[k][j] == '.') G[k][j].erase(f);
int x = i/3*3+k/3, y = j/3*3 + k%3;
if (board[x][y] == '.') G[x][y].erase(f);
}
}
}
}
}
dfs(0, 0, board);
}
};