2分钟学会Weka的线性回归模型来预测房价

房子的价格可能由【面积】【卧室数量】【是否装修】【朝向】等因素决定。

假设有这样的一些arff数据

@relation house

@attribute houseSize numeric
@attribute houseNumber numeric
@attribute houseDirection numeric
@attribute decoration numeric
@attribute sellingPrice numeric

@data
145,3,1,1,260
132,3,1,0,236
130,3,0,0,225
135,2,1,1,210
120,3,1,1,240
120,2,1,1,220
118,3,1,1,225
118,2,1,0,208
98,2,0,1,199
63,2,1,1,129
60,2,1,0,115
54,2,0,1,110
50,1,1,1,111
56,1,0,1,108
48,1,0,0,80

第一个房子的解释是145方,3个房间,南北向已装修,价格260万。

在weka中读入数据,可以看一看数据集的统计信息:

如卧室间数的最小值为1,最大值为3,平均值为2.133,标准差为0.743

 

  1. 模型选择:Classify→functions→LinearRegression(线性回归)

  2. 将之作为训练集:Test options→Using training set

  3. 需要预测的是房价:Test options的组合框→sellingPrice

  4. 开始建模:点击 Start

可以看到得到的模型结果是:

sellingPrice = 1.3915 * houseSize + 15.4595 * houseNumber + 12.3114 * decoration + 2.9818

也就是说110方,两卧南北朝向已装修的房子的预测价格应该是:

1.3915 * 110 + 15.4595 * 2 + 12.3114 * 1 + 2.9818 = 199.2772 万元

模型解释

  • 每平方米对房屋价格的贡献为1.3915万元

  • 每间房间对房屋价格的贡献为15.4595万元

  • 装修与否对房屋价格的贡献为12.3114万元

  • 房子的朝向对房屋价格没有关系

参考:《大学计算机案例实验教程——紧密结合学科需要》(教材) 南开大学公共计算机基础教学部

  • 0
    点赞
  • 2
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值