联邦大模型Federated Large Language Model

联邦大模型Federated Large Language Model

摘要:大规模语言模型(LLM)受到了广泛的关注,并应用在各个领域,但在场景发展中仍面临挑战。这些挑战源于公共领域数据稀缺以及在私有领域数据的隐私保护。为了解决这些问题,提出了联邦大规模语言模型(Federated LLM)的概念,共包括三部分,即联邦LLM预训练(Federated LLM pre-training)、联邦LLM微调(Federated LLM fine-tuning)和联邦LLM提示工程(Federated LLM prompt engineering)。针对每个组成部分,我们讨论了它相对于传统LLM训练方法的优势,并提出了具体的工程策略以供实施。此外,我们探讨了联邦学习与大规模语言模型整合所引入的新挑战。我们分析了现有解决方案,并在联邦LLM的背景下确定了这些解决方案可能面临的潜在障碍。

隐私保护计算的三种主要方法

(1)基于密码学的方法:主要关注多方安全计算(MPC)。
(2)机密计算:利用可信执行环境(TEE)。
(3)联邦学习:跨机构数据协作。

大模型(LLM)训练包含三个阶段

预训练(pre-training)、自

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值