一个简单的问题:一根绳子,要把他分成三段,唯一的工具是刀,怎么办?
如果分成两段,傻瓜都知道怎么办,那么如果是三段我想应该会难倒很多人。
偶然间,发现三角形的质心坐标
x0=(x1+x2+x3)/3;
y0=(y1+y2+y3)/3;
定理:三角形A1A2A3的质心为p,那么其中位线构成的三角形B1B2B3的质心也是p。
这个很容易证明:
B1( (x1+x2)/2 , (y1+y2)/2)
B2( (x2+x3)/2 , (y2+y3)/2)
B3( (x3+x1)/2 , (y3+y1)/2)
根据质心坐标公式,三角形B1B2B3的质心p’和p重合。
于是想到一个很笨的办法,如此对三角形A1A2A3求中位线得到三角形B1B2B3,那么对B1B2B3做同样的操作,经过相当多次的循环之后,B三角形会越来越小,直到B三角形成为一个点,于是三角形A1A2A3的质心也就求出来了。求质心的过程,其实也就和将绳子分三段是差不多的。
比如,令x1=x2=0,x3=length(绳子长度)。那么最后质心的横坐标就是绳子三等分的结果。
这里归纳一下其解法:
Step one: X1=0,X2