前言
运用不同算法涉及效率都是用算法复杂度:(时间复杂度、空间复杂度)来表示,具体是什么?
时间频度
时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)
当n较大时:1. 可以忽略常数项 2. 可以忽略低次项 3. 可以忽略系数
也就是T(n)=2n^2+3n+10
=> T(n)=n^2
一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。
记作 T(n)=O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度
例:算法T(n)=2n^2+3n+10
=> T(n)=n^2
,设置辅助函数f(n)=n^2
,该算法的时间复杂度为O(f(n))=O(n^2)
时间复杂度
算法的时间复杂度是一个函数,它定性描述该算法的运行时间
感觉时间复杂度就是执行算法所需的计算工作量,通常用O(f(n))表示
算法运行时间在不同的机器上会不同,所以时间复杂度只是简化的比较
常见的时间复杂度量级有:
- 常数阶O(1)
- 对数阶O(logn)
- 线性阶O(n)
- 线性对数阶O(nlogn)
- 平方阶O(n²)
- 立方阶O(n³)
- K次方阶O(nk)
- 指数阶(2n)
常数阶 O(1)
类似于这种不含变量循环等复杂结构的算法
int i=0,j=1;
int k=i++ + ++j;
无论有多少条语句,时间复杂度都算常数阶O(1)
为什么不是O(2)呢?O(f(n))表示法并不是用于来真实代表算法的执行时间的,它是用来表示代码执行时间的增长变化趋势的函数
即可以无论运行多少条语句,不是随着变量而变化,都简化为O(1)
对数阶 O(logn)
由于计算机使用二进制的记数系统,对数常常以2为底(即log2n,有时写作 lgn )。然而,由对数的换底公式,logan和logbn只有一个常数因子不同,这个因子在大O记法中被丢弃。因此记作O(logn),而不论对数的底是多少,是对数时间算法的标准记法
int i=1;
while(i<n){
i=i*2;
}
假设循环x次跳出循环,即2x=n;x=log2n,满足对数阶时间复杂度定义,这个算法的时间复杂度就是O(logn)
算法运行时间为logan时间复杂度即为O(logn)
线性阶 O(n)
算法的运行时间与输入大小n为线性关系,就是线性阶时间复杂度
for(int i=0;i<n;i++){
int k=i;
}
for循环就是最常见的线性阶算法,时间复杂度为O(n)
线性对数阶O(nlogn)
将线性阶的算法循环n编就是线性对数阶
for(int m=0;m<n;m++){
int i=1;
while (i<n){
i=i*2;
}
}
平方阶O(n²)
明显O(n*n)就是平方阶
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
}
}
for循环嵌套for循环的时间复杂度就是O(n)
明显立方阶O(n3) 、K次方阶O(nk)和平方阶相似
注意只保留最高阶的项,立方阶、k次方阶也要简化
O(n2/2+n/2) 简化为 O(n2)
指数阶(2n)
指数阶算法常常用于求出所以可能
例如n个集合有2n个子集,求所有子集
指数阶就是常数阶循环n次,与线性阶相似,但是复杂度大多了
效率: o(1) > o(log2n)> o(n)> o(nlog2n) > o(n2) > o(n3) > o(2n) > o(nn)
空间复杂度
空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度,记做S(n)=O(f(n))
空间复杂度就是看占据的存储空间
O(1)
临时空间不随着某个变量n的大小而变化,即此算法空间复杂度为一个常量,记为O(1)
int i=1,j=2;
int k=i+j;
不管要交换的数据多大,存储空间始终为固定数量
例如:冒泡排序
int[] arr={1,5,8,2,6,0};
int temp;
for(int i=0;i<arr.length-1;i++){
for(int j=0;j<arr.length-1-i;j++){
if(arr[j]>arr[j+1]){
temp=arr[j];
arr[j]=arr[j+1];
arr[j+1]=temp;
}
}
System.out.print("第"+i+"轮排序后:");
for(int a=0;a<6;a++) {
System.out.print(arr[a]);
}
System.out.print("\n");
}
时间复杂度为O(n^2),空间复杂度为O(1)
存储空间一直都是那个数组和一个临时变量
常见的排序空间复杂度: