机器学习
ClownXu1130
突破自我
展开
-
Python中Gradient Boosting Machine(GBM)调参方法详解
原文地址:Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python by Aarshay Jain 原文翻译与校对:@酒酒Angie(drmr_anki@qq.com) && 寒小阳(hanxiaoyang.ml@gmail.com) 时间:2016年9月。 出处:http://blog.csdn.net/转载 2018-01-23 15:38:25 · 1345 阅读 · 1 评论 -
XGBoost参数调优完全指南(附Python代码)
原文地址:Complete Guide to Parameter Tuning in XGBoost by Aarshay Jain 原文翻译与校对:@MOLLY && 寒小阳 (hanxiaoyang.ml@gmail.com) 时间:2016年9月。 出处:http://blog.csdn.net/han_xiaoyang/article/details/52665396 声明:版权所转载 2018-01-23 15:44:56 · 755 阅读 · 0 评论 -
XGBoost算法解析和基于Scikit-learn的GBM算法实现
1. 概要Gradient Tree Boosting (别名 GBM, GBRT, GBDT, MART)是一类很常用的集成学习算法,在KDD Cup, Kaggle组织的很多数据挖掘竞赛中多次表现出在分类和回归任务上面最好的performance。同时在2010年Yahoo Learning to Rank Challenge中, 夺得冠军的LambdaMART算法也属于这一类算法。因此Tre转载 2018-01-24 21:53:13 · 769 阅读 · 0 评论 -
SMOTE过采样算法
为什么类别不平衡是不好的从模型的训练过程来看 从训练模型的角度来说,如果某类的样本数量很少,那么这个类别所提供的“信息”就太少。 使用经验风险(模型在训练集上的平均损失)最小化作为模型的学习准则。设损失函数为0-1 loss(这是一种典型的均等代价的损失函数),那么优化目标就等价于错误率最小化(也就是accuracy最大化)。考虑极端情况:1000个训原创 2018-01-28 22:28:29 · 37253 阅读 · 3 评论 -
《统计学习方法》勘误表
李航老师的统计学习方法堪称是机器学习、数据挖掘等方向必读之书,然而书中难免有部分错误。于是李航老师更新了新的勘误表,转载作为收藏详情参见:http://blog.sina.com.cn/s/blog_7ad48fee01017dpi.html#cmt_3285959转载 2018-01-29 10:37:16 · 3810 阅读 · 0 评论 -
周志华《机器学习》勘误表
周志华老师的《机器学习》的勘误原帖地址: http://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/MLbook2016.htm由于勘误是不断更新的,本博客并不会实时更新,因此建议看原贴,原贴是周老师实时更新的勘误,本博客只是部分勘误勘误修订[部分修订是为了更便于读者理解,并非原文有误](第一版第十次印刷, 2016年9月):转载 2018-01-29 10:44:00 · 1718 阅读 · 0 评论 -
为什么梯度反方向是函数值下降最快的方向?
梯度下降算法原创 2018-03-04 19:03:49 · 8275 阅读 · 0 评论