Source
2015ACM/ICPC亚洲区上海站-重现赛(感谢华东理工)
第一种方法:暴搜
从根走到叶子的方法有很多种,但是由叶子走到根的路就只有一种,所以这里从每个叶子结点回溯。每次遇到一个点,只需要判断若n大于零减,若n小于零加,因为对于某一个点u,它的父结点只会是u/2,u/2/2…全部加起来都小于u,所以若大于零必须只能是减。
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
LL path[100];
int main()
{
int T;
scanf("%d",&T);
int t=0;
while(T--){
LL n,k;
scanf("%lld%lld",&n,&k);
int p;
for(LL i=1<<(k-1);i<1<<k;i++){
LL i1=i,n1=n;
p=0;
while(i1>=1){
if(n1>0){
n1-=i1;
path[p++]=-i1;
}
else{
n1+=i1;
path[p++]=i1;
}
i1>>=1;
}
if(n1==0) break;
}
t++;
printf("Case #%d:\n",t);
while(--p>=0){
printf("%lld %c\n",abs(path[p]),path[p]>0?'-':'+');
}
}
return 0;
}
- 学习了左右移的使用
- 学习了abs(),在头文件<algorithm>中
第二种方法:构造
看题目中,N小于等于
2
k
2^k
2k,只走左支路的话最大值是
2
k
−
1
2^k-1
2k−1,可以类比二进制的思想,这k个数通过正负组合正好能构成
2
k
2^{k}
2k个数,虽然纠结过会不会有重复而导致1到
2
k
2^{k}
2k中间有某些数不能表示,但是列数值小一点的例子都是没问题的,所以大概可以从这点证明
假如全部走左支路,得到的数一定是奇数,假如N为偶数,到最末尾的分支要选择右支路
其实代码和暴搜写起来只有一点点区别
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long LL;
LL path[100];
int main()
{
int T;
scanf("%d",&T);
int t=0;
while(T--){
LL n,k;
scanf("%lld%lld",&n,&k);
int p=0;
LL i1,n1=n;
if(n%2!=0)
i1=pow(2,k-1);
else i1=pow(2,k-1)+1;
while(i1>=1){
if(n1>0){
n1-=i1;
path[p++]=-i1;
}
else{
n1+=i1;
path[p++]=i1;
}
i1>>=1;
}
t++;
printf("Case #%d:\n",t);
while(--p>=0){
printf("%lld %c\n",abs(path[p]),path[p]>0?'-':'+');
}
}
return 0;
}