HDU 5573 - Binary Tree

Source
2015ACM/ICPC亚洲区上海站-重现赛(感谢华东理工)
第一种方法:暴搜
    从根走到叶子的方法有很多种,但是由叶子走到根的路就只有一种,所以这里从每个叶子结点回溯。每次遇到一个点,只需要判断若n大于零减,若n小于零加,因为对于某一个点u,它的父结点只会是u/2,u/2/2…全部加起来都小于u,所以若大于零必须只能是减。

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
LL path[100];
int main()
{
    int T;
    scanf("%d",&T);
    int t=0;
    while(T--){
        LL n,k;
        scanf("%lld%lld",&n,&k);
        int p;
       for(LL i=1<<(k-1);i<1<<k;i++){
            LL i1=i,n1=n;
            p=0;
            while(i1>=1){
                if(n1>0){
                    n1-=i1;
                    path[p++]=-i1;
                }
                else{
                    n1+=i1;
                    path[p++]=i1;
                }
                i1>>=1;
            }
            if(n1==0) break;
        }
        t++;
        printf("Case #%d:\n",t);
        while(--p>=0){
            printf("%lld %c\n",abs(path[p]),path[p]>0?'-':'+');
        }
    }
    return 0;
}
  • 学习了左右移的使用
  • 学习了abs(),在头文件<algorithm>中

第二种方法:构造
    看题目中,N小于等于 2 k 2^k 2k,只走左支路的话最大值是 2 k − 1 2^k-1 2k1,可以类比二进制的思想,这k个数通过正负组合正好能构成 2 k 2^{k} 2k个数,虽然纠结过会不会有重复而导致1到 2 k 2^{k} 2k中间有某些数不能表示,但是列数值小一点的例子都是没问题的,所以大概可以从这点证明
    假如全部走左支路,得到的数一定是奇数,假如N为偶数,到最末尾的分支要选择右支路
    其实代码和暴搜写起来只有一点点区别

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long LL;
LL path[100];
int main()
{
    int T;
    scanf("%d",&T);
    int t=0;
    while(T--){
        LL n,k;
        scanf("%lld%lld",&n,&k);
        int p=0;
        LL i1,n1=n;
        if(n%2!=0)
            i1=pow(2,k-1);
        else i1=pow(2,k-1)+1;
        while(i1>=1){
            if(n1>0){
                n1-=i1;
                path[p++]=-i1;
            }
            else{
                n1+=i1;
                path[p++]=i1;
            }
            i1>>=1;
        }
        t++;
        printf("Case #%d:\n",t);
        while(--p>=0){
            printf("%lld %c\n",abs(path[p]),path[p]>0?'-':'+');
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值