Codeforces Educational Codeforces Round 67 (Rated for Div. 2) D. Subarray Sorting

Codeforces Educational Codeforces Round 67 (Rated for Div. 2) D. Subarray Sorting

  1. 考虑目标数组b[i]是如何组成的,在 a [ a i ] a[ai] a[ai]处找到第一个等于 b [ i ] b[i] b[i]的,然后再在 [ 0 , a i ] [0,ai] [0,ai]中找到最小值,若最小值还要小于 b [ i ] b[i] b[i]则不可能使 b [ i ] b[i] b[i]放到最前面,若满足最小值大于 b [ i ] b[i] b[i]则清空 a [ a i ] a[ai] a[ai],再找 b [ i + 1 ] b[i+1] b[i+1]。对于 b [ i + 1 ] b[i+1] b[i+1]来说, [ 0 , a i ] [0,ai] [0,ai]排过序也不影响它,如果 b [ i + 1 ] b[i+1] b[i+1]找到的 a i ai ai [ 0 , a i ] [0,ai] [0,ai]只有部分排过序,那么不影响 b [ i + 1 ] b[i+1] b[i+1]找区间内最小值,如果 b [ i + 1 ] b[i+1] b[i+1]找到的 a i ai ai [ 0 , a i ] [0,ai] [0,ai]全部都排过序,那么 [ 0 , a i ] [0,ai] [0,ai]的最小值只会大于等于未排序的 [ 0 , a i ] [0,ai] [0,ai]的最小值,所以也不影响,所以每次b只需要和a比较就好,不需要每次都更新排序。
  2. 在寻找 [ 0 , a i ] [0,ai] [0,ai]最小值时,用到线段树,并且预处理记录好每个数在原数组出现的下标,不然会超时
#include <bits/stdc++.h>
using namespace std;
const int N=3e5+5;
const int INF=0x3F3F3F3F;
int n,q;
int arr[N];
int brr[N];
int tree[4*N];
queue<int> que[N];

void build_tree(int root,int start,int end){
    if(start==end){
        tree[root]=arr[start];
    }
    else{
        int L=root*2+1;
        int R=root*2+2;
        int mid=(start+end)>>1;
        build_tree(L,start,mid);
        build_tree(R,mid+1,end);
        tree[root]=min(tree[L],tree[R]);
    }
}

void update_tree(int root,int start,int end,int idx,int val){
    if(start==end){
        tree[root]=val;
    }
    else{
        int L = root * 2 + 1;
        int R = root * 2 + 2;
        int mid = (start + end) >>1;
        if(idx<=mid)
            update_tree(L,start,mid,idx,val);
        else 
            update_tree(R,mid+1,end,idx,val);
        tree[root]=min(tree[L],tree[R]);
        }
}

int query_tree(int root,int start,int end,int L,int R){
    if(start>=L&&end<=R){
        return tree[root];
    }
    else if(start>R||end<L){
        return INF;
    }
    else if(start==end){
        return tree[root];
    }
    else{
        int LL=root*2+1;
        int RR=root*2+2;
        int mid=(start+end)>>1;
        int VL=query_tree(LL,start,mid,L,R);
        int VR=query_tree(RR,mid+1,end,L,R);
        return min(VR,VL);    
    }
}

void pre(int &ss, int &ee)
{
    for (int i = 0; i < n; i++)
        scanf("%d", &arr[i]);
    for (int i = 0; i < n; i++)
        scanf("%d", &brr[i]);
    for (int i = 0; i < n; i++)
    {
        if (arr[i] == brr[i])
            ss++;
        else
            break;
    }
    for (int i = n - 1; i >= 0; i--)
    {
        if (arr[i] == brr[i])
            ee--;
        else
            break;
    }
    for (int i = 0; i <= n; i++)
    {
        while (!que[i].empty())
            que[i].pop();
    }
    for (int i = ss; i <= ee; i++)
    {
        que[arr[i]].push(i);
    }
    build_tree(0, 0, n - 1);
    /* for (int i = 0; i < 13; i++)
    {
        cout << "tree[" << i << "]:" << tree[i] << endl;
    }*/
}

bool solve(int &ss, int &ee)
{
    if(ss>ee) return true;
    bool flag = true;
    
    for (int i = ss; i <= ee; i++)
    {
        int lab = brr[i];
        if (que[lab].empty())
        {
            flag = false;
            break;
        }
        int ai = que[lab].front();
        que[lab].pop();
        arr[ai]=INF;
        //cout<<"match:a["<<ai<<"]:"<<arr[ai]<<endl;
        update_tree(0,0,n-1,ai,INF);
        /* for(int i=0;i<13;i++){
            cout<<"tree["<<i<<"]:"<<tree[i]<<endl;
        }*/
        if (ss == ai)
            continue;
        int m = query_tree(0, 0, n - 1, ss, ai - 1);
        //cout<<"range:"<<ss<<"---"<<ai-1<<" "<<"m:"<<m<<endl;
        if (m < lab)
        {
            flag = false;
            break;
        }
    }
    return flag;
}

int main()
{
    cin>>q;
    while(q--){
        cin>>n;
        int ss=0,ee=n-1;
        pre(ss,ee);
        bool res=solve(ss,ee);
        if(res) cout<<"YES"<<endl;
        else cout<<"NO"<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值