Huggingface学习笔记

1.自然语言处理

分类,机器翻译,情感分析,智能客服,摘要与阅读理解

我们语言能力的学习源于生活中的点点滴滴,一次对话,一次阅读都是学习

2.培养模型的学习能力

需要特定的任务和标签吗?每一次对话难道都对应了标准答案吗?不是的

更重要的是训练阅读能力,学习能力,理解能力,只需要给模型阅读资料即可

所谓阅读资料,就是咱们人类的文本数据,小说,新闻,电影等都是可以的

所以,我们现在需要模型具备的是语言理解能力,而是不是分类那种专项技能

3.如何来培养模型的学习能力呢?

BERT系(五岳剑派)完形填空

GPT系(魔教) 一个个回归,不断的自回归

4.NLP究竟拼的是什么

训练非常吃算力

拼网络结构,损失函数,还是各种训练技巧呢?

从目前NLP比较核心的模型来看,主要拼的是数据量和参数量

每天会听上万的文字

2017,2022,2023,2100

我们需要用提供好的预训练模型完成我们的任务,站在巨人的肩膀上前进

5.如何开始NLP呢?

NLP不再需要传统方法,一些交给transformer就足够了,NLP领域这么多算法和模型,不需要一个个来学习一个个来实验

6.Huggingface

Huggingface就是集大成者于一身,包括了当下NLP所有核心模型

对我们来说,调用bert模型,gpt模型及其训练好的权重参数,只需要1行代码

微调我们自己的任务,只需处理好咱们的数据,然后继续训练模型即可

即使你对数据一无所知,即便你对代码稀里糊涂,内置的函数,调这个包就可以了,即便你对数据无从下手,

7.它不仅是一个工具包,更是一个社区,也是NLP大佬们的舞台

运营好,却可能花掉超过千倍的开发成本,所以不仅仅是模型

越来越多的学术大佬通过它来开源模型,来宣传论文以及研究成果

8.关于它的故事

据传说,30个兼职的开发与算法工程师就撬动了20亿的市值

其实这离不开开源的力量,AI领域太需要一个舞台和社区了

时势造英雄,赶上了transformer在ai领域爆火,第一个吃螃蟹的人

BERT和GPT席卷NLP,Huggingface坐收渔利,社区驱动技术进步

9.一举两得,分而治之

Ai离不开学术上的驱动也离不开工程化的落地

站在巨人的肩膀上,先学后用

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值