穹妹的家

In solitude , where we are least alone.

[基环] codeforces 711D. Directed Roads

Directed Roads

题意:

给n个点,和P[i],表示从第i个点到P[i]有一条有向边,每条边可以至多翻转方向一次,问有多少种方法翻转后没有环。

思路:

n个点n条边,无自环,每点出度为1,这个模型应该也出过很多次了。
这个图要么就是一整个环,要么就是一个环加一棵树,要么就是前面的复制几次。
考虑一个连通块,将它分为环上的边x和环外的边y,可以看出环外的边随便翻转都不形成环,所以任意翻转,答案是2|y|,环上的任意翻转会有顺时针和逆时针两种环,所以答案是2|x|2,一个连通块的答案就是2|y|(2|x|2),多个连通块相互独立,直接乘起来就行。

#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+5;
typedef long long ll;
const ll mod = 1e9+7;
vector<int>G[N];
int in[N];
bool hs[N];
ll qpow(ll a, ll k){
    ll res = 1;
    while(k){
        if(k&1) res = (res*a)%mod;
        a = (a*a)%mod;
        k >>= 1;
    }
    return res;
}
ll solve(int rt){
    int all = 0;
    queue<int>q, qq;
    q.push(rt); hs[rt] = 1;
    while(!q.empty()){
        int u = q.front(); q.pop();
        all++;
        if(in[u] == 1) qq.push(u);
        for(int v : G[u]){
            if(!hs[v]){
                hs[v] = 1;
                q.push(v);
            }
        }
    }
    int ciy = all;
    while(!qq.empty()){
        int u = qq.front(); qq.pop();
        --ciy;
        for(int v : G[u]){
            if((--in[v]) == 1) qq.push(v);
        }
    }
    return qpow(2, all-ciy)*((qpow(2, ciy)-2+mod)%mod)%mod;
}
int main(){
    int n;
    scanf("%d", &n);
    ll ans = 1;
    for(int x, i = 1; i <= n; ++i){
        scanf("%d", &x);
        G[x].push_back(i);
        G[i].push_back(x);
        in[x]++, in[i]++;
    }
    for(int i = 1; i <= n; ++i){
        if(hs[i]) continue;
        ans = ans*solve(i)%mod;
    }
    printf("%lld\n", ans);
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/kg20006/article/details/52369101
文章标签: codeforces
个人分类: ACM 题解
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

[基环] codeforces 711D. Directed Roads

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭