题目大意:给出一张树形的地图,然后每个节点就是一个洞,每个洞里面有bugs和brain,现在给出我方有m个骑兵,每个骑兵可以消灭20个bugs,经过的洞穴不能再回头,要收服每个洞穴里面的brain就必须消灭每个洞穴里面的全部bugs,求最大的brain
思路:树形DP.
第一次做很纠结,dp的路很漫长..一开始各种纠结,所幸跟羽哥讨论了一便之后思路清晰蛮多了,感谢羽哥...嘿嘿
对于x个节点来说.dp[x][i]表示在x洞穴用i个骑兵可以收服的brain的数目.其实就是01背包的稍加变形.
for(i=1;i<=n;i++)
for(int j=m;j>=r;j--)
for(int k=1;k<=j-r;j++) //k<=j-r 即是:k+r<=j,即等会用于:对于当前节点使用剩下的骑兵k在子节点能够收服的brain值.
dp[x][j]=max(dp[x][j],dp[x][j-k]+dp[i][k]);// i是x的子节点.这就是说:x节点收服brain的最大值等于: max(本身初始化的值 ,本身+剩下骑兵的情况下子节点收服的brain值)
整个过程DFS下去再回朔,不用标记,因为这是树,只需要标记下前缀就可以了.因为数据有可能是:反树的方向给出,我一开始就只是考虑单方向所以WA了两次.囧..
所以就迫不得已给双方向,再协助pre这个前缀辅助变量就可以保证肯定是按树来遍历了.
AC Program(无注释版)
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
#include<string.h>
using namespace std;
int map[110][110];
int bug[110];
int bra[110];
int vis[110];
int dp[110][110];
int n,m;
void dfs(int x,int pre)
{
int tr=(bug[x]+19)/20;
for(int i=m;i>=tr;i--)
dp[x][i]=bra[x];
for(int i=1;i<=n;i++)
{
if(map[x][i]&&pre!=i)
{
dfs(i,x);
for(int j=m;j>=tr;j--)
{
for(int k=1;k<=j-tr;k++)
{
dp[x][j]=max(dp[x][j],dp[x][j-k]+dp[i][k]);
}
}
}
}
}
int main()
{
while(cin>>n>>m && (n!=-1||m!=-1))
{
for(int i=1;i<=n;i++)
cin>>bug[i]>>bra[i];
int a,b;
memset(map,0,sizeof(map));
memset(dp,0,sizeof(dp));
for(int i=1;i<n;i++)
{
cin>>a>>b;
map[a][b]=1;
map[b][a]=1;
}
if(m==0)
{
cout<<0<<endl;
continue;
}
dfs(1,-1);
cout<<dp[1][m]<<endl;
}
return 0;}
AC program(注释版):
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
#include<string.h>
//#include<map>
using namespace std;
int map[110][110];
int bug[110];
int bra[110];
int vis[110];
int dp[110][110];
int n,m;
//dp[x][j]表示在i洞派出j个骑兵获取的brain值
//dp[x][j]=max{dp[x][j],dp[x][j-k]+dp[i][k]};
void dfs(int x,int pre)//巧妙设立一个前驱.便于判断是否是以树的状态遍历下去
{
int tr=(bug[x]+19)/20;
for(int i=m;i>=tr;i--)//初始化很重要,因为是边界条件
dp[x][i]=bra[x];//进入这个洞,只要派出的人数不小于这个洞的bug的
//都可以至少获得这个洞brain值这么大的brain
for(int i=1;i<=n;i++)
{
if(map[x][i]&&pre!=i)
{
dfs(i,x);
for(int j=m;j>=tr;j--)
{
for(int k=1;k<=j-tr;k++)
{
dp[x][j]=max(dp[x][j],dp[x][j-k]+dp[i][k]);
}
}
}
}
}
int main()
{
while(cin>>n>>m && (n!=-1||m!=-1))
{
for(int i=1;i<=n;i++)
cin>>bug[i]>>bra[i];
int a,b;
memset(map,0,sizeof(map));
memset(dp,0,sizeof(dp));
/* for(int i=1;i<=n;i++)
cout<<dp[i]<<" ";
cout<<endl;*/
for(int i=1;i<n;i++)
{
cin>>a>>b;
map[a][b]=1;//有向树 虽然说是树的状态,但是给出的有可能是反过来的数据,所以最好,双向
map[b][a]=1;
}
if(m==0)
{
cout<<0<<endl;
continue;
}
dfs(1,-1);
cout<<dp[1][m]<<endl;
}
//system("pause");
return 0;}