title: 数论经典习题系列(一)
categories:
- 数论
tags: - 重集组合
经典练习题
例题1
n个没有区别的球放入r个有标志的盒子里面(n>=r),每个盒子只允许放一个球,请问有多少种放法?
每个盒子只能放一个球,所以方法为排列数,P(n,r);
例题2
n个没有区别的球放入r个有标志的盒子里面(n>=r),每个盒子至少放一个球,请问有多少种放法?
方法一
分两个步骤完成:
(1)首先每个盒子放一个球,因为球是没有区别的,所以这样的方法是1
(2)然后再n-r个球放到r个盒子里面,每个盒子放置的球数没有限制,比如把所有的球都装到其中一个盒子,所以盒子相当于是一个重集:
{
∞
⋅
a
1
,
∞
⋅
a
2
,
∞
⋅
a
3
,
⋅
⋅
⋅
,
∞
⋅
a
n
\infty\cdot a_{1},\infty\cdot a_{2},\infty\cdot a_{3},\cdot \cdot \cdot ,\infty\cdot a_{n}
∞⋅a1,∞⋅a2,∞⋅a3,⋅⋅⋅,∞⋅an}。
结果就是相当于在重集里面取出n-r个元素的组合
其实就是F(r,n-r)= ( r + n − r − 1 r − 1 ) \binom{r+n-r-1}{r-1} (r−1r+n−r−1)= ( r + n − r − 1 n − r ) \binom{r+n-r-1}{n-r} (n−rr+n−r−1)= ( n − 1 r − 1 ) \binom{n-1}{r-1} (r−1n−1)
(1)(2)使用乘法定理之后,结果等于 ( n − 1 r − 1 ) \binom{n-1}{r-1} (r−1n−1)
方法2
直接一个步骤完成,要求盒子不能为空,根据隔板法(可以wiki一下)
r个盒子,n个球,相当于要把n个球划分为r堆,
因为n个球有n-1的缝隙,要划分为r堆,就需要找r-1个缝隙。
所以就是在n-1个缝隙里面找出r-1个缝隙就好了
答案就是
(
n
−
1
r
−
1
)
\binom{n-1}{r-1}
(r−1n−1)