这道题是典型的回溯法求解问题,首先简单介绍一下回溯法,学过图的深度遍历,求解过图的连通图问题之后,应该能够理解。
回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。
用回溯算法解决问题的一般步骤:
1、 针对所给问题,定义问题的解空间,它至少包含问题的一个(最优)解。
2 、确定易于搜索的解空间结构,使得能用回溯法方便地搜索整个解空间 。
3 、以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。
回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。
模板:
void backtrack(int i,int n,other parameters)
{
if( i == n)
{
//get one answer
record answer;
return;
}
//下面的意思是求解空间第i个位置上的下一个解
for(next ans in position i of solution space)
{
backtrack(i+1,n,other parameters);
}
}
题目描述:
给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的数字可以无限制重复被选取。
代码:
void backtrack(vector<int>& candidates, vector<vector<int>>& res, int target, vector<int>& temp, int begin){
if(target <= 0){
if(target == 0){
res.push_back(temp);
}
return;
}
for(int i = begin; i < candidates.size(); i++){
temp.push_back(candidates[i]);
backtrack(candidates, res, target - candidates[i], temp, i);
temp.pop_back();
}
}
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>> res = {};
sort(candidates.begin(), candidates.end());
vector<int> temp = {};
backtrack(candidates, res, target, temp, 0);
return res;
}