LeetCode——39. 组合总和(回溯法)

这道题是典型的回溯法求解问题,首先简单介绍一下回溯法,学过图的深度遍历,求解过图的连通图问题之后,应该能够理解。

回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

用回溯算法解决问题的一般步骤:

1、 针对所给问题,定义问题的解空间,它至少包含问题的一个(最优)解。

2 、确定易于搜索的解空间结构,使得能用回溯法方便地搜索整个解空间 。

3 、以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。

回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。

模板:

void backtrack(int i,int n,other parameters)
{
  if( i == n)
{
 //get one answer
record answer;
return;
}
//下面的意思是求解空间第i个位置上的下一个解
for(next ans in position i of solution space)
{
  backtrack(i+1,n,other parameters);
}
}

题目描述:

给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的数字可以无限制重复被选取。

代码:

void backtrack(vector<int>& candidates, vector<vector<int>>& res, int target, vector<int>& temp, int begin){
    if(target <= 0){
        if(target == 0){
            res.push_back(temp);
        }
        return;
    }
    for(int i = begin; i < candidates.size(); i++){
        temp.push_back(candidates[i]);
        backtrack(candidates, res, target - candidates[i], temp, i);
        temp.pop_back();
    }
}

vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
    vector<vector<int>> res = {};
    sort(candidates.begin(), candidates.end());
    vector<int> temp = {};
    backtrack(candidates, res, target, temp, 0);
    return res;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值