P1618 三连击(升级版)
类型:简单枚举(从123开始)
注意点:
- 处理 A B C,防止A B C 有相同因子
- 最大值
- 数学原理
- 数能被A整除
1.处理 A B C,防止A B C 有相同因子
法一:辗转相除法写gcd
int gcd(int a, int b){
return b == 0 ? a : gcd(b, a % b);
}
法二:c++库函数 __gcd
#include<algorithm>
__gcd(a,b)
2.最大值
可知 最小三位数需小于 999/A * C
3.数学原理
当一个集合里所有数相加的和,所有数相乘的积等于另一个集合所有数相加的和,所有数相乘的积
这两个集合完全相同
应用:判断是否使用了1-9所有数字
4.数能被A整除
如 A=123 B=456 C=789
如果数可以不被A整除 那么 132 456 789 也会输出
(因为A B C都是 int)
AC 代码
#include<iostream>
#include<algorithm>
using namespace std;
int main(){
int A,B,C,ok=0;
cin>>A>>B>>C;
int k=__gcd(__gcd(A,B),C);
A/=k;
B/=k;
C/=k;
//处理 A B C
int maxn=999*A/C;//找到上限
for(int i=123;i<=maxn;i++)
if(i%A==0){//确定该数可以被A整除
int j=i/A*B;
int k=i/A*C;
if(((i%10+(i/10)%10+(i/100)%10+j%10+(j/10)%10+(j/100)%10+k%10+(k/10)%10+(k/100)%10)==(1+2+3+4+5+6+7+8+9))&&(((i%10)*((i/10)%10)*((i/100)%10)*(j%10)*((j/10)%10)*((j/100)%10)*(k%10)*((k/10)%10)*((k/100)%10)==(1*2*3*4*5*6*7*8*9))))//数学原理
{
cout<<i<<" "<<j<<" "<<k<<" "<<endl;
ok=1;//判断是否找到该数
}
}
if(!ok) cout<<"No!!!"<<endl;//没找到,输出No!!!
return 0;
}