数据结构 --- 队列

队列

1. 概念与结构

1.1 概念:只允许在一端进行插入数据操作,在另一端进行删除数据操作的线性表,因此队列具有先进先出、后进后出的特点。、在这里插入图片描述

队头:进行删除/出队的一端。
队尾:进行插入/入队的一端。

1.2 结构的选择

队列的结构应该如何选型呢?应该选择**顺序结构(数组)还是链式结构(单链表)**呢?
方案一:选择数组
那这里还有一个问题,**哪里是队头、哪里是队尾呢?**这里我们假设队头在左,队尾在右。
在这里插入图片描述

经过顺序表的学习,我们知道出队(顺序表头删)的时间复杂度为O(n),入队(顺序表尾插)的时间复杂度为O(1)。那么是时间复杂度最好的结构嘛?我们把队头和队尾兑换位置试试看。
在这里插入图片描述
这样的结构实现队列是不合理的,假设我们数组申请了6个元素空间大小的数组,这样我们就面临了几个问题,入队和出队无法使用size,需要额外的定义一个变量,队满扩容后队列的数据需要整体向后移动,甚至入/出队要定义的变量也需要改变,否则无法正确的入队,这样的结构实现起来是非常复杂的,我们考虑通过这个结构来实现队列。
方案二:使用链表(单链表)
在这里插入图片描述
假设是这样的结构,入队(单链表的头插)时间复杂度为O(1),出队(单链表的尾删)时间复杂度为O(n)
在这里插入图片描述
假设是上图这样的结构,入队(单链表的尾插)时间复杂度为O(n),出队(单链表的头删)时间复杂度为O(1)
看来使用链表的时间复杂度和使用数组的时间复杂度类似,最多可以做到一个为O(1),另一个为O(1),那**我们能不能把链表的时间复杂度全部都做到O(1)呢?**以链表的第二种假设为例:
在这里插入图片描述
这种结构是入队的时间复杂度为O(n),因为我们需要遍历找到链表的队尾元素。所以我们在以上的结构上做一些小小的改动。
在这里插入图片描述
我们定义了两个指向指针,一个指向队头,一个指向队尾,这样入队的时候就不需要找到遍历找队尾了,这样入队/出队的时间复杂度都可以做到O(1)。下面我们就要使用这种结构来实现队列。

2.队列的实现

2.1定义队列的结点结构

typedef int QDataType;
typedef struct QueueNode
{
	QDataType data;
	struct QueueNode* next;
};

这里队列的是使用单链表来实现的,所以队列的结点结构和单链表的结点结构一样。

2.2定义队列的结构

typedef struct Queue
{
	struct QueueNode* QHead;
	struct QueueNode* QTail;
	int size;
};

这里定义的队列结构实际就是定义了两个指向队列头尾结点的指针,就是这两个指针实现了入队列和出队列的时间复杂度均为O(1),size是队列中有效元素的个数,定义size可以简化部分函数的实现

2.3 队列的初始化

void QueueInit(Queue* pq)
{
	assert(pq);
	pq->pHead = NULL;
	pq->pTail = NULL;
	pq->size = 0;
}

这里把队列结构的头尾指针全部都置为NULL,并把size置为0,表示队列中没有任何一个元素。

2.4 入队列

void QueuePush(Queue* pq, QDataType x)
{
	assert(pq);
	QDataType* newnode = (QDataType*)malloc(sizeof(QDataType));
	if (newnode == NULL)
	{
		perror("malloc fail!");
		exit(1);
	}
	if (pq->pHead == NULL)
	{
		pq->pHead = pq->pTail = newnode;
	}
	else
	{
		pq->pTail->next = newnode;
		pq->pTail = pq->pTail->next;
	}
	pq->size++;
}

入队列之前首先要创建一个结点并把结点的data和next初始化一下,入队的时候要考虑到两种情况,一:队列为空,队头和队尾指针都要指向该结点,二:队列不为空,队头不需要改变,队尾单独改变即可,最后不要忘了size++;

2.5 队列的判空

bool QueueEmpty(Queue* pq)
{
	assert(pq);
	return pq->pHead == NULL;
}

队列的判空有多种写法,下面的也是可取的方式。

bool QueueEmpty(Queue* pq)
{
	assert(pq);
	return pq->pTail == NULL;
}

2.6 返回队列的有效元素个数

int QueueSieze(Queue* pq)
{
	assert(pq);
	return pq->size;
}

这里我们提出一个问题,**如果我们在队列结构中没有定义size那这个函数该如何实现呢?**对于链式结构中结点个数的统计,那只能遍历实现了,时间复杂度为O(n)并不是一种很好的时间复杂度,当我们定义size后,一键返回即可。

2.7 出队列

void QueuePop(Queue* pq)
{
	assert(pq);
	assert(!QueueEmpty(pq));
	if (pq->pHead == pq->pTail)
	{
		free(pq->pHead);
		pq->pHead = pq->pTail = NULL;
	}
	else
	{
		QueueNode* next = pq->pHead->next;
		free(pq->pHead);
		pq->pHead = next;
	}
	pq->size--;
}

出队列之前要先判空,然后分情况判断,当队列中只有一个结点的时候,pHead和pTail都置为NULL,当队列中不只一个结点的时候,只需要改变pHead,最后不要忘记size–;

2.8 取队头 && 队尾 数据

QDataType QueueFront(Queue* pq)
{
	assert(pq);
	assert(!QueueEmpty(pq));
	return pq->pHead->data;
}
QDataType QueueBack(Queue* pq)
{
	assert(pq);
	assert(!QueueEmpty(pq));
	return pq->pTail->data;
}

这里说明一点,当队列为空的时候,QueueEmpty返回true,但是assert()的参数为false的时候才会结束程序,这里我们需要把QueueEmpty的结果取反。

2.9 销毁队列

void QueueDestory(Queue* pq)
{
	assert(pq);
	QueueNode* pcur = pq->pHead;
	QueueNode* next = NULL;
	while (pcur != NULL)
	{
		next = pcur->next;
		free(pcur);
		pcur = next;
	}
	pq->pHead = pq->pTail = NULL;
	pq->size = 0;
}

遍历销毁结点即可。
队列是一种限定操作的线性表,这里的队列是单链表来实现的,所以在这里可以称队列是一种限定操作的单链表。

void test()
{
	Queue q;
	QueueInit(&q);
	QueuePush(&q, 1);
	QueuePush(&q, 2);
	QueuePush(&q, 3);
    QueuePush(&q, 4);
	QueuePop(&q);
	bool em = QueueEmpty(&q);
	if (em == true)
	{
		printf("为空\n");
	}
	else
	{
		printf("不为空\n");
	}
	//while (QueueSize(&q))
	//{
	//	printf("%d\n", QueueSize(&q));
	//	QueuePop(&q);
	//}
	printf("phead:%d\n", QueueFront(&q));
	printf("ptail:%d\n", QueueBack(&q));
	//QueueDestory(&q);
}

这里给出一个测试函数,大家也可以调试来观察函数的详细执行情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值