自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 高雷诺数湍流数据库“AeroFlowData”

高雷诺数湍流数据库“AeroFlowData”是国家自然科学基金委重大研究计划——“高雷诺数湍流数据库的构建与湍流机器学习集成研究”项目的阶段性重大研究成果,是全球首个面向航空航天的高雷诺数湍流数据库。目前集成了高超声速飞行器标模、民机标模和航空发动机典型部件的近40个模型、超过500个计算与实验状态,数据总量近200TB。此次数据库的发布,进一步促进了学术研究和产业应用相互结合,增强了人工智能对传统力学学科的深度赋能,推动了智能流体力学生态的建设和发展,为加速中国 AI 开源开放生态的繁荣发展贡献力量。

2025-07-03 11:09:20 398

原创 openfoam高性能计算和数据处理工具

ParaView:OpenFOAM与ParaView集成紧密,后者是一个开源的可视化和分析工具,能够处理OpenFOAM生成的大量数据文件,提供交互式的图形界面,便于用户探索和理解模拟结果。Foam::functionObjects:这是OpenFOAM内置的一套数据处理工具,可以用于实时监控计算过程中的关键参数,如压力、速度分布等,并自动保存数据,便于后续分析。Python脚本可以读取OpenFOAM的原始数据文件,进行复杂的数学运算、统计分析,甚至机器学习预测,以挖掘数据背后的深层含义。

2025-07-03 10:59:02 329

原创 人工智能在燃烧反应流中的应用

例如,基于样本增量量子神经网络和改进型量子蜂群算法的智能燃烧优化方法,可以动态建立燃煤锅炉的NOx排放浓度和煤耗的综合优化模型,并实现模型参数的滚动优化,以保证模型的辨识能力和泛化能力。通过引入人工智能算法与反应网络研究的融合,可以突破人类大脑性能和视觉认知的极限,深入了解化学过程机理,并实现过程机理的可视化。例如,基于图卷积神经网络的反应特征智能迁移学习算法,可以从反应网络图的本征拓扑结构出发,逐步深入研究,并提出一套由非结构化的反应机理出发进行可解释性的过程分析和过程建模的智能化过程。

2025-07-03 10:52:40 1474

原创 实验流体力学与计算流体力学的相辅相成

EFD依赖于物理实验,通过在实验室中设置实验装置,模拟流体的流动状态,直接观察和测量流体的行为。然而,实验方法受到实验条件的限制,难以模拟复杂、高雷诺数或极端条件下的流体流动。相比之下,CFD则是一种基于数值模拟的方法,通过计算机软件求解流体力学的控制方程,模拟流体的流动状态。CFD不受实验条件的限制,可以模拟各种复杂流动情况,包括高雷诺数、低雷诺数、低压力、高压力等。3、能源工程:在能源工程中,CFD用于研究涡轮机、锅炉和燃气轮机等设备的流动特性,提高设备的效率和可靠性。

2025-07-03 10:45:49 550

原创 机器学习在等离子体湍流研究中的应用

例如,利用机器学习对大型螺旋装置中的等离子体湍流数据进行分析,找到了在不同湍流状态下最佳的磁场约束参数,使得等离子体能够更稳定地被约束在磁场中,减少了热量的逸出,有利于核聚变反应的持续进行。数据数量的需求与限制虽然机器学习需要大量的数据来进行有效的模型训练,但在等离子体湍流研究中,获取足够数量的数据有时是困难的。(一)等离子体湍流的特性等离子体湍流是一种具有不同大小涡旋的流动现象,在受磁场约束的高温等离子体中,湍流会导致等离子体受到干扰,使来自受限等离子体的热量向外流动,进而导致等离子体温度下降。

2025-07-03 10:40:31 815

原创 人工智能控制湍流

1、数据驱动的湍流模型构建利用机器学习技术,尤其是深度学习,可以从大量实验或仿真数据中学习湍流的统计特性,如雷诺应力和耗散率等,从而预测湍流行为。2、超分辨率重建对于低分辨率的湍流数据,使用深度学习技术如卷积神经网络(CNN)可以增强数据的分辨率,从而更准确地重构湍流场。4、湍流结构识别与特征学习利用模式识别技术,如卷积神经网络和生成对抗网络(GANs),识别湍流中的典型结构,如涡旋和剪切层。10、优化控制参数和律使用优化算法如遗传算法和深度强化学习,优化控制参数和控制律,以实现更有效的湍流控制。

2025-07-03 10:35:01 271

原创 当湍流遇见AI:机器学习重构流体力学研究范式

其核心突破在于构建了可解释的隐式湍流本构关系,而非传统神经网络的黑箱预测。湍流被称为"经典物理学最后的未解之谜",其复杂的多尺度涡结构、非线性相互作用和极高的计算成本,始终是CFD领域的核心挑战。MIT开发的TurbRecon系统(2023)仅需5个压力传感器数据,即可通过时空Transformer网络重建整场涡量分布,在风电叶片动态失速监测中达到92%的相关系数。谷歌量子AI团队成功在Sycamore量子处理器上实现了32维湍流场的变分量子模拟(2024),开辟了处理超大规模湍流问题的新维度。

2025-06-26 18:25:27 756

原创 流体力学未来十大前沿方向

一、计算流体力学(CFD)与人工智能的深度融合AI赋能的湍流建模:传统湍流模型(如k-ε、LES)依赖经验参数,而深度学习通过海量DNS数据训练亚格子应力模型,显著提升预测精度。例如,DeepMind的MeshfreeFlowNet已实现无网格湍流模拟,误差降低40%实时仿真与数字孪生:基于GPU加速的CFD与AI结合,使风洞实验周期从数月缩短至数小时。例如,MIT团队开发的“液体活检芯片”可捕获循环肿瘤细胞,灵敏度达单细胞级别活性流体与自组织:研究细菌悬浮液等活性物质的集体运动,为智能材料设计提供灵感。

2025-06-23 14:30:55 765

原创 都2025了,你还在做传统流体力学?

计算流体力学(CFD)与人工智能(AI)结合的当前应用情况及未来研究发展。

2025-06-23 14:13:37 2153

原创 Fluent 中多相流模型全面解析

3.颗粒或液滴在连续相中的运动:若关注颗粒或液滴在连续相中的运动轨迹、分布规律以及与连续相的相互作用,如喷雾干燥、气力输送等过程,Eulerian-Lagrangian 模型则是最佳选择。Eulerian-Eulerian 模型可以准确模拟气体在固体颗粒中的流动情况,包括颗粒的流化状态、气体与颗粒之间的传热传质过程,为气固流化床的优化设计和操作提供依据。通过该模型,可以了解混合器内不同位置的混合程度、颗粒的运动轨迹以及液固相间的相互作用,从而改进混合器的结构和操作条件,提高混合效率。

2025-06-23 14:07:15 2769

原创 PINN 来势汹汹,是否具备颠覆传统 FVM 方法的实力?

在精度方面,对于大多数常规的流体问题,经过精细调参和优化的 FVM 能够给出非常准确的结果,其精度已经得到了长期实践的验证。而 PINN 虽然在一些场景下能够达到与传统方法相近的精度,但在某些复杂物理过程的模拟中,由于神经网络的近似特性,其精度仍然存在一定的提升空间。但是,PINN 也面临着一些挑战。二者各自具有独特的优势和适用场景,更有可能的发展趋势是相互融合、取长补短,也或许还会有更多新颖的计算方法涌现例如,可以利用 PINN 快速预测的特性,为 FVM 提供初始解,从而加快 FVM 的收敛速度;

2025-06-23 13:54:07 378

原创 CFD中常用的网格和后处理

Paraview:开源的可视化和数据分析工具,可读取多种数据格式,如vtk、csv、xdmf等,支持并行处理庞大数据集,有强大的脚本支持和扩展性。Tecplot:功能强大的数据分析和可视化处理软件,有专门的数据接口,可直接读入*.cas和*.dat文件,提供丰富的可视化选项。特点:生成正交的矩形/六面体网格,无需贴合几何边界,通过“切割”或“浸没边界”处理复杂形状,适合快速建模,但近壁需要特殊处理。Visit:开源的科学可视化工具,基于vtk,有高效的并行处理能力,适用于处理大规模数据集。

2025-06-19 15:43:56 768

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除