问题
1、为什么使用消息队列?
异步、削峰、解耦、数据分发
削峰:防止系统被高流量打垮,同时又不想通过扩容来支持,峰值只是某个时间点,通过扩容来支持大流量浪费机器资源,可以采用消息队列来削峰。
解耦:同步改异步,解耦合,例如支付完成返券的操作不能影响支付完成的后续操作,采用异步的方式。
2、消息队列的优缺点
非实时消费、可能存在消息丢失,消息重复消费的情况,同时由于中间经过了代理转存,链路变长了
3、如何保证消息队列的高可用?
一个是要保证broker代理的高可用,另一个是要保证broker的管理者的高可用,rocketmq是nameserver、kafka是zookeeper
4、如何保证消息不被重复消费?或者说,如何保证消息消费的幂等性?
主要是靠消费方通过唯一的序列号防重复保证;
其实消息重复消费的主要原因在于回馈机制(RabbitMQ是ack,Kafka是offset),在某些场景中我们采用的回馈机制不同,原因也不同,例如消费者消费完消息后回复ack, 但是刚消费完还没来得及提交系统就重启了,这时候上来就pull消息的时候由于没有提交ack或者offset,消费的还是上条消息。
那么如何怎么来保证消息消费的幂等性呢?实际上我们只要保证多条相同的数据过来的时候只处理一条或者说多条处理和处理一条造成的结果相同即可,但是具体怎么做要根据业务需求来定,例如入库消息,先查一下消息是否已经入库啊或者说搞个唯一约束啊什么的,还有一些是天生保证幂等性就根本不用去管,例如redis就是天然幂等性。
还有一个问题,消费者消费消息的时候在某些场景下要放过消费不了的消息,遇到消费不了的消息通过日志记录一下或者搞个什么措施以后再来处理,但是一定要放过消息,因为在某些场景下例如spring-rabbitmq的默认回馈策略是出现异常就没有提交ack,导致了一直在重发那条消费异常的消息,而且一直还消费不了,这就尴尬了,后果你会懂的。
5、如何保证消息的可靠性传输?或者说,如何处理消息丢失的问题?
数据的丢失问题,可能出现在生产者、MQ、消费者中,咱们从 RabbitMQ 和 Kafka 分别来分析一下吧。
一、RabbitMQ
image.png
【1】生产者弄丢了数据
生产者将数据发送到 RabbitMQ 的时候,可能数据就在半路给搞丢了,因为网络问题啥的,都有可能。
此时可以选择用 RabbitMQ 提供的事务功能,就是生产者发送数据之前开启 RabbitMQ 事务channel.txSelect
,然后发送消息,如果消息没有成功被 RabbitMQ 接收到,那么生产者会收到异常报错,此时就可以回滚事务channel.txRollback
,然后重试发送消息;如果收到了消息,那么可以提交事务channel.txCommit
。
// 开启事务
channel.txSelect
try {
// 这里发送消息
} catch (Exception e) {
channel.txRollback
// 这里再次重发这条消息
}
// 提交事务
channel.txCommit
但是问题是,RabbitMQ 事务机制(同步)一搞,基本上吞吐量会下来,因为太耗性能。
所以一般来说,如果你要确保说写 RabbitMQ 的消息别丢,可以开启confirm
模式,在生产者那里设置开启confirm
模式之后,你每次写的消息都会分配一个唯一的 id,然后如果写入了 RabbitMQ 中,RabbitMQ 会给你回传一个ack
消息,告诉你说这个消息 ok 了。如果 RabbitMQ 没能处理这个消息,会回调你一个nack
接口,告诉你这个消息接收失败,你可以重试。而且你可以结合这个机制自己在内存里维护每个消息 id 的状态,如果超过一定时间还没接收到这个消息的回调,那么你可以重发。
事务机制和cnofirm
机制最大的不同在于,事务机制是同步的,你提交一个事务之后会阻塞在那儿,但是confirm
机制是异步的,你发送个消息之后就可以发送下一个消息,然后那个消息RabbitMQ 接收了之后会异步回调你一个接口通知你这个消息接收到了。
所以一般在生产者这块避免数据丢失,都是用confirm
机制的。
【2】RabbitMQ 弄丢了数据
就是 RabbitMQ 自己弄丢了数据,这个你必须开启 RabbitMQ 的持久化,就是消息写入之后会持久化到磁盘,哪怕是 RabbitMQ 自己挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢。除非极其罕见的是,RabbitMQ 还没持久化,自己就挂了,可能导致少量数据丢失,但是这个概率较小。
设置持久化有两个步骤:
-
创建 queue 的时候将其设置为持久化
这样就可以保证 RabbitMQ 持久化 queue 的元数据,但是不会持久化 queue 里的数据。
-
第二个是发送消息的时候将消息的
deliveryMode
设置为 2就是将消息设置为持久化的,此时 RabbitMQ 就会将消息持久化到磁盘上去。
必须要同时设置这两个持久化才行,RabbitMQ 哪怕是挂了,再次重启,也会从磁盘上重启恢复 queue,恢复这个 queue 里的数据。
持久化可以跟生产者那边的confirm
机制配合起来,只有消息被持久化到磁盘之后,才会通知生产者ack
了,所以哪怕是在持久化到磁盘之前,RabbitMQ 挂了,数据丢了,生产者收不到ack
,你也是可以自己重发的。
注意,哪怕是你给 RabbitMQ 开启了持久化机制,也有一种可能,就是这个消息写到了 RabbitMQ 中,但是还没来得及持久化到磁盘上,结果不巧,此时 RabbitMQ 挂了,就会导致内存里的一点点数据丢失。
【3】消费端弄丢了数据
RabbitMQ 如果丢失了数据,主要是因为你消费的时候,刚消费到,还没处理,结果进程挂了,比如重启了,那么就尴尬了,RabbitMQ 认为你都消费了,这数据就丢了。
这个时候得用 RabbitMQ 提供的ack
机制,简单来说,就是你关闭 RabbitMQ 的自动ack
,可以通过一个 api 来调用就行,然后每次你自己代码里确保处理完的时候,再在程序里ack
一把。这样的话,如果你还没处理完,不就没有ack
?那 RabbitMQ 就认为你还没处理完,这个时候 RabbitMQ 会把这个消费分配给别的 consumer 去处理,消息是不会丢的。
image.png
二、Kafka
【1】消费端弄丢了数据
唯一可能导致消费者弄丢数据的情况,就是说,你消费到了这个消息,然后消费者那边自动提交了 offset,让 Kafka 以为你已经消费好了这个消息,但其实你才刚准备处理这个消息,你还没处理,你自己就挂了,此时这条消息就丢咯。
这不是跟 RabbitMQ 差不多吗,大家都知道 Kafka 会自动提交 offset,那么只要关闭自动提交 offset,在处理完之后自己手动提交 offset,就可以保证数据不会丢。但是此时确实还是可能会有重复消费,比如你刚处理完,还没提交offset,结果自己挂了,此时肯定会重复消费一次,自己保证幂等性就好了。
生产环境碰到的一个问题,就是说我们的 Kafka 消费者消费到了数据之后是写到一个内存的 queue 里先缓冲一下,结果有的时候,你刚把消息写入内存 queue,然后消费者会自动提交 offset。然后此时我们重启了系统,就会导致内存 queue 里还没来得及处理的数据就丢失了。
【2】Kafka 弄丢了数据
这块比较常见的一个场景,就是 Kafka 某个 broker 宕机,然后重新选举 partition 的 leader。大家想想,要是此时其他的 follower 刚好还有些数据没有同步,结果此时 leader 挂了,然后选举某个 follower 成 leader 之后,不就少了一些数据?这就丢了一些数据啊。
生产环境也遇到过,我们也是,之前 Kafka 的 leader 机器宕机了,将 follower 切换为 leader 之后,就会发现说这个数据就丢了。
所以此时一般是要求起码设置如下 4 个参数:
- 给 topic 设置
replication.factor
参数:这个值必须大于 1,要求每个 partition 必须有至少 2 个副本。 - 在 Kafka 服务端设置
min.insync.replicas
参数:这个值必须大于 1,这个是要求一个 leader 至少感知到有至少一个 follower 还跟自己保持联系,没掉队,这样才能确保 leader 挂了还有一个 follower 吧。 - 在 producer 端设置
acks=all
:这个是要求每条数据,必须是写入所有 replica 之后,才能认为是写成功了。 - 在 producer 端设置
retries=MAX
(很大很大很大的一个值,无限次重试的意思):这个是要求一旦写入失败,就无限重试,卡在这里了。
我们生产环境就是按照上述要求配置的,这样配置之后,至少在 Kafka broker 端就可以保证在 leader 所在 broker 发生故障,进行 leader 切换时,数据不会丢失。
【3】生产者会不会弄丢数据?
如果按照上述的思路设置了 acks=all
,一定不会丢,要求是,你的 leader 接收到消息,所有的 follower 都同步到了消息之后,才认为本次写成功了。如果没满足这个条件,生产者会自动不断的重试,重试无限次。
6、如何保证消息的顺序性?
因为在某些情况下我们扔进MQ中的消息是要严格保证顺序的,尤其涉及到订单什么的业务需求,消费的时候也是要严格保证顺序,不然会出大问题的。
先看看顺序会错乱的两个场景:
rabbitmq:一个queue,多个consumer,这不明显乱了
kafka:一个topic,一个partition,一个consumer,内部多线程,这不也明显乱了
7、如何解决消息队列的延时以及过期失效问题?消息队列满了以后该怎么处理?有几百万消息持续积压几小时怎么解决?
(一)、大量消息在mq里积压了几个小时了还没解决
几千万条数据在MQ里积压了七八个小时,从下午4点多,积压到了晚上很晚,10点多,11点多
这个是我们真实遇到过的一个场景,确实是线上故障了,这个时候要不然就是修复consumer的问题,让他恢复消费速度,然后傻傻的等待几个小时消费完毕。这个肯定不能在面试的时候说吧。
一个消费者一秒是1000条,一秒3个消费者是3000条,一分钟是18万条,1000多万条,所以如果你积压了几百万到上千万的数据,即使消费者恢复了,也需要大概1小时的时间才能恢复过来。
一般这个时候,只能操作临时紧急扩容了,具体操作步骤和思路如下:
先修复consumer的问题,确保其恢复消费速度,然后将现有cnosumer都停掉。
新建一个topic,partition是原来的10倍,临时建立好原先10倍或者20倍的queue数量。
然后写一个临时的分发数据的consumer程序,这个程序部署上去消费积压的数据,消费之后不做耗时的处理,直接均匀轮询写入临时建立好的10倍数量的queue。
接着临时征用10倍的机器来部署consumer,每一批consumer消费一个临时queue的数据。
这种做法相当于是临时将queue资源和consumer资源扩大10倍,以正常的10倍速度来消费数据。
等快速消费完积压数据之后,得恢复原先部署架构,重新用原先的consumer机器来消费消息。
(二)、消息队列过期失效问题
假设你用的是rabbitmq,rabbitmq是可以设置过期时间的,就是TTL,如果消息在queue中积压超过一定的时间就会被rabbitmq给清理掉,这个数据就没了。那这就是第二个坑了。这就不是说数据会大量积压在mq里,而是大量的数据会直接搞丢。
这个情况下,就不是说要增加consumer消费积压的消息,因为实际上没啥积压,而是丢了大量的消息。我们可以采取一个方案,就是批量重导,这个我们之前线上也有类似的场景干过。就是大量积压的时候,我们当时就直接丢弃数据了,然后等过了高峰期以后,比如大家一起喝咖啡熬夜到晚上12点以后,用户都睡觉了。
这个时候我们就开始写程序,将丢失的那批数据,写个临时程序,一点一点的查出来,然后重新灌入mq里面去,把白天丢的数据给他补回来。也只能是这样了。
假设1万个订单积压在mq里面,没有处理,其中1000个订单都丢了,你只能手动写程序把那1000个订单给查出来,手动发到mq里去再补一次。
(三)、消息队列满了怎么搞?
如果走的方式是消息积压在mq里,那么如果你很长时间都没处理掉,此时导致mq都快写满了,咋办?这个还有别的办法吗?没有,谁让你第一个方案执行的太慢了,你临时写程序,接入数据来消费,消费一个丢弃一个,都不要了,快速消费掉所有的消息。然后走第二个方案,到了晚上再补数据吧。
9、RabbitMQ 有哪些重要的角色?
10、RabbitMQ 有哪些重要的组件?
11、RabbitMQ 有几种广播类型?
三种广播模式:
fanout: 所有bind到此exchange的queue都可以接收消息(纯广播,绑定到RabbitMQ的接受者都能收到消息);
direct: 通过routingKey和exchange决定的那个唯一的queue可以接收消息;
topic: 所有符合routingKey(此时可以是一个表达式)的routingKey所bind的queue可以接收消息;
12、Kafka 可以脱离 zookeeper 单独使用吗?为什么?
kafka 不能脱离 zookeeper 单独使用,因为 kafka 使用 zookeeper 管理和协调 kafka 的节点服务器
13、Kafka 有几种数据保留的策略?
kafka 有两种数据保存策略:
- 按照过期时间保留
- 按照存储的消息大小保留
14、Kafka 的分区策略有哪些?
- 给定了分区号,直接将数据发送到指定的分区里面去
- 没有给定分区号,给定数据的key值,通过key取上hashCode进行分区
- 既没有给定分区号,也没有给定key值,直接轮循进行分区
- 自定义分区
有几种数据保留的策略?
kafka 有两种数据保存策略:
- 按照过期时间保留
- 按照存储的消息大小保留
14、Kafka 的分区策略有哪些?
- 给定了分区号,直接将数据发送到指定的分区里面去
- 没有给定分区号,给定数据的key值,通过key取上hashCode进行分区
- 既没有给定分区号,也没有给定key值,直接轮循进行分区
- 自定义分区