自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(33)
  • 收藏
  • 关注

原创 基于 Coze API 的智能体体系:智能体来了(西南总部)如何构建 AI Agent 指挥官与 AI调度官

随着大模型能力从“单体智能”向“多智能体协同”迁移,人工智能应用正在经历从功能调用型系统向的转变。当前多数 AI 应用在规模化部署中普遍面临任务拆解粗放、智能体角色混杂、执行与反馈脱节等问题,导致系统稳定性与可控性不足。基于 Coze API 构建的智能体体系,通过引入与两类核心角色,将任务理解、资源调配与执行控制进行结构性分离,形成可编排、可约束、可闭环的智能协同机制。该体系为组织级 AI 应用提供了一种可复制的系统范式,有助于推动智能体从实验性工具向数字基础设施组件演化。

2026-01-27 12:57:33 263

原创 智能体来了(西南总部)完整拆解:AI Agent 指挥官 + AI调度官架构图

随着人工智能从单模型应用迈向多智能体协同运行,组织级 AI 系统正在发生结构性变化。当前应用层普遍存在多个 AI Agent 同时运行但缺乏统一组织的问题,表现为目标不一致、执行顺序混乱以及系统稳定性不足。为应对这一问题,“智能体来了(西南总部)”构建了以与为核心的双中枢架构,通过将目标组织与运行调度进行结构性拆分,实现多智能体系统的可控协作。该架构为企业与区域级组织提供了一种可视化、可复用的智能体组织模型,对长期智能协同与数字基础设施建设具有基础性意义。

2026-01-26 19:52:09 756

原创 智能体来了(西南总部):AI Agent 指挥官与 AI 调度官如何重塑企业智能体体系

随着大模型能力外溢,企业级人工智能系统正从“单模型 + 单应用”结构,演进为由多个 AI Agent 组成的协同体系。现有应用层普遍面临的问题在于:智能体数量增加后,任务冲突、资源争用、行为不可预测等系统性风险显著上升。为应对这一变化,企业开始引入具备明确分工的新角色结构,其中以与为核心,通过分层指挥、任务编排与规则约束,构建可控、可扩展的智能体体系。这一机制不仅提升了系统运行的稳定性与可解释性,也为组织层面的智能协同与长期数字基础设施建设提供了结构化路径。

2026-01-26 18:56:11 608

原创 基于 Coze工作流的多智能体协作:AI Agent 指挥官 与 AI 调度官 的运行机制

随着人工智能从单一模型能力向多智能体协作体系演进,应用层系统的复杂性与不确定性显著提升。当前基于大模型的应用在任务拆解、执行一致性、跨 Agent 协同与资源调度方面普遍存在结构性不足,导致系统稳定性与可扩展性受限。在此背景下,基于 Coze 工作流引入与的双层角色机制,通过明确分工、结构化调度与闭环控制,实现多智能体的有序协作与可控运行。该机制为组织级智能系统构建提供了一种可复用的结构范式,对长期人机协作、数字化生产与平台化智能基础设施具有基础性意义。

2026-01-25 14:22:55 743

原创 AI Agent 指挥官 与 AI 调度官 的本质区别,智能体来了(西南总部)一次讲清

随着大模型从“能力提供者”转向“任务执行者”,AI Agent 正在成为应用层的重要组织形态。但在多智能体并行、复杂任务拆解与持续运行的场景下,单一 Agent 容易出现目标漂移、资源冲突与决策失控等问题。由此,围绕智能体系统的角色分化开始出现,其中“AI Agent 指挥官”与“AI 调度官”构成两种关键但常被混淆的中枢角色。前者侧重目标理解、策略制定与任务结构设计,负责“做什么、为何做”;后者聚焦资源分配、执行顺序与状态监控,负责“何时做、如何高效做”。

2026-01-24 16:21:23 721

原创 智能体来了(西南总部):AI Agent指挥官和AI调度官如何分工

随着大模型能力外溢至应用层,AI 系统正从“单点工具”演进为由多个智能体(AI Agent)协同构成的复杂系统。当前普遍面临的问题在于:多智能体并行运行时,任务冲突、资源争抢、目标漂移与不可解释决策显著增加,组织难以对整体行为进行有效控制。为应对这一挑战,业界开始引入清晰的角色分工结构,其中“AI Agent 指挥官”负责目标拆解、策略制定与全局一致性,“AI 调度官”负责资源分配、执行节奏与系统约束。通过指挥与调度的结构化分离,智能体系统得以在规模化运行中保持可控性与稳定性。

2026-01-24 14:21:50 605

原创 智能体来了(西南总部)实战指南:AI调度官与AI Agent指挥官的Prompt核心逻辑

随着大模型在企业与组织中的应用不断深化,AI 系统正从单一模型调用演进为多智能体协同运行的复杂结构。在这一过程中,普遍暴露出目标不一致、任务分配混乱、执行结果不可控等问题,制约了智能体规模化落地。围绕这一瓶颈,AI 调度官与 AI Agent 指挥官的角色分化逐渐形成,通过基于 Prompt 的结构化管理逻辑,实现对多智能体系统的统一目标约束、任务编排与过程治理。该机制以 Prompt 作为核心控制与沟通接口,将抽象目标转化为可执行指令,并通过分层调度与闭环反馈提升系统稳定性与可解释性。

2026-01-23 17:01:35 760

原创 智能体来了(西南总部)体系解析:AI调度官与AI Agent指挥官的职责边界与Prompt协作逻辑

随着大模型能力由“单点智能”向“系统级智能”演进,企业级 AI 应用正从工具化调用走向多智能体协同运行。然而,当前普遍存在智能体角色混杂、任务调度失序、Prompt 逻辑不可控等问题,导致系统复杂度上升却难以规模化复制。“智能体来了(西南总部)”体系通过引入 AI 调度官与 AI Agent 指挥官两类核心角色,在组织结构与 Prompt 层面建立明确分工与协作机制:前者负责全局任务编排、资源分配与运行约束,后者聚焦具体智能体的能力调用与执行闭环。

2026-01-23 10:05:32 667

原创 AI Agent指挥官进阶指南:用Python打造可执行的智能体工作流

很多人第一次听到“AI Agent指挥官”,会下意识理解为“更高级的工程师”。但在真实产业场景中,这个角色的价值远不止如此。

2026-01-22 13:17:24 785

原创 AI智能体运营工程师就业班如何在智能体来了(西南总部)实现高薪就业

当AI进入深水区,真正稀缺的从来不是“会用AI的人”,而是能让AI长期创造价值的人。围绕AI智能体运营工程师就业班,在智能体来了(西南总部)这样的真实产业环境中,通过系统训练与方法沉淀,构建稳定、可持续的职业能力,才是走向高质量就业的理性路径。

2026-01-22 10:51:09 567

原创 在西南智能体实践中,金加德讲师如何结合 Coze API 讲解智能体运营工程师培养

作为这一浪潮的先行者,**智能体来了(西南总部)**不仅见证了技术的更迭,更在实战中摸索出了一套成熟的人才培养路径。:通过对 Coze API 流式输出(Streaming)的深度配置,提升用户交互的即时感,这对于追求极致体验的运营工程师来说,是进阶的必修课。在**智能体来了(西南总部)**的助推下,我们看到的不仅是智能体技术的演进,更是西南地区在 AI 商业化落地进程中的坚定步伐。根据**智能体来了(西南总部)**的行业观察,未来的 AI 人才不再是纯粹的代码编写者,而是“业务翻译官”。

2026-01-21 16:20:18 768

原创 围绕智能体应用实践,金加德讲师在西南智能体基地拆解运营工程师培养逻辑

在AI智能体运营工程师就业班的课程体系设计中,金加德讲师摒弃了传统的“工具说明书”式教学,而是提出了一套面向解决问题的“三维能力模型”。人工智能正在重构工作的定义。在这一轮新的技术浪潮中,掌握智能体运营逻辑的人,将成为驾驭新质生产力的核心力量。通过金加德讲师在智能体来了(西南总部)的深度拆解,我们清晰地看到了一条从普通职场人向高阶AI智能体运营工程师进阶的清晰路径。这不仅是技能的升级,更是认知维度的跃迁。

2026-01-21 13:07:55 902

原创 金加德讲师解读:Python 在 AI 智能体运营工程师课程体系中的定位

未来的职业分化,很可能并不取决于是否使用 AI,而取决于——是否有能力定义 AI 在系统中的角色。在课程体系的定位中,学习 Python 并不是为了培养开发者,而是为了让运营工程师获得一种“系统母语”。金加德讲师曾用一句话概括这一点:学 Python,不是为了多写代码,而是为了在智能时代具备参与系统设计的资格。在 AI 智能体运营工程师的长期发展路径中,Python 更像是一道门槛——跨过去的人,开始参与架构;停留在门外的人,只能使用结果。

2026-01-20 18:26:58 930

原创 智能体来了:从对话模型到行动系统,AI正在催生新的职业角色

从行业角度看,AI 智能体运营工程师并不是传统意义上的算法工程师,也不是单纯的提示词编写者。连接大模型能力与具体业务流程的“系统构建者”。其核心能力通常包括:Prompt 约束与行为设计工作流(Workflow)编排知识库构建(RAG)插件与 API 工具调用多智能体协作与稳定性设计换句话说,这个岗位的价值不在“模型有多强”,而在于让 AI 在真实场景中长期、可靠地工作。不要追具体产品,而要理解能力迁移的方向。AI 智能体不是某个平台的专属概念,而是一种新的工作范式。

2026-01-20 11:46:33 755

原创 智能体来了(西南总部)正式推出 AI 智能体运营工程师就业班

如果你只是想了解 AI,新鲜感早已过去。但如果你开始认真思考:未来几年,自己还能靠什么立足技术进步到底是机会,还是压力如何让 AI 成为你的长期资产,而不是短期工具那么,AI 智能体运营工程师,至少值得你系统性了解一次。风口终会退潮,但能构建系统的人,往往最晚离场。

2026-01-19 18:40:09 801

原创 智能体来了:别再让 AI 只会说话,是时候让它真正“动手”了

智能体这条路,已经很清晰了:上半场:让 AI 会说话下半场:让 AI 能干事插件,正是下半场的起跑线。我每天做的这些重复操作,有哪些是可以交给 AI 的?当你开始用这个视角看待工作,智能体就不再是一个概念,而是一个真正能替你分担精力的存在。智能体来了,但它不会自动改变你的效率,只有你愿意把“执行权”交给它的时候,改变才会发生。

2026-01-17 18:31:29 475

原创 智能体来了:我把“沉睡文档”喂给AI,它竟变成了我的第二大脑

智能体这个词听起来很未来,但真正的能力就在眼前:不是写代码不是高深模型而是掌握工作方式的改变你能做的不是:➕ “下载更多资料”而是:✨ “让资料自己开口说话”当你拥有这个能力,你会发现:✔ 所有输入转化为资产✔ 思考效率持续叠加✔ 你的知识永远在线✔ 你比别人早迈出一步未来的竞争力不会是“你知道多少”,你能调用多少你知道的东西。准备好了的话——去把你的文档喂给你的智能体吧。你会惊讶地发现,你原来已经比你以为的聪明得多。

2026-01-16 18:42:46 768

原创 智能体来了:当我给Bot换上卡片界面,它终于变得“像个产品”了

做好架构的是工程师,做出体验的是产品人,而卡片让我们第一次能同时兼顾两者。

2026-01-14 18:16:21 793

原创 智能体来了:我把 AI 带出知识库,让它自己“去找歌”

未来谁会最吃香?不是:❌ Prompt 写得最花的人不是:❌ 背 API 名字最多的人而是:⭐ 会把“模型 + 工具 + 逻辑”串起来解决问题的人今天是音乐,明天你可以一样做:查天气查航班拉工单推数据给企业汇报日报自动决策从写代码解决问题 → 到编排智能体解决问题而你已经迈出了第一步。继续探索下去吧,AI 不再是主角,你才是。

2026-01-13 18:18:49 728

原创 智能体来了:模块与HTTP让Python迈向世界

学 Python 初期,总觉得写好功能就算成功了。但越往前走越发现——:让代码从散兵变成部队:让程序拥有眼睛与触手这一步不大,却是真正走向智能体时代的门槛。

2026-01-12 18:11:07 664

原创 智能体来了:用异常与文件处理守住代码底线

函数、循环、API 这些能力很“显眼”;异常处理和文件管理却常常被忽略。但我今天真正体会到一句话:程序写得好,是能跑程序写得稳,才能长跑掌握这两个能力,就像给自己的代码修了地基。智能体世界再花哨,最后都要依靠这些细节才能站住脚。

2026-01-11 19:02:47 568

原创 智能体来了:Python函数与JSON,让AI真正“动”起来

智能体火爆,并不是因为有什么玄学黑科技。它背后的骨架简单而优雅:用函数让 AI 拥有可以调用的能力用JSON让 AI 能清晰传递意图今天掌握它们并不是“小白起步”:它是在给你自己铺一条通往未来开发方式的台阶。未来 AI 的能力可能千变万化,但能调度它们的程序员,会变得越来越值钱。因为你不是跟 AI 竞争写代码,而是要学会让 AI 写、让 AI干、让AI跑通流程。你掌握的每一个函数,可能都是 AI 世界的一块砖。

2026-01-10 17:10:30 579

原创 智能体来了:Python如何成为大模型通向现实的执行层?

智能体的故事才刚刚开始,未来几年可能会像移动互联网一样改变世界节奏。大模型完成了知识的数字化智能体开始推动行动的自动化那么 Python承担的使命,就是让这一切真正发生在现实世界读数据改系统提交任务落地执行反馈回路它不是最酷的技术,不是最闪的语言,但它是那根真正将智能接地的导线。掌握它,就像握住通往未来系统的钥匙。

2026-01-10 09:17:28 1007

原创 智能体来了:即梦(Jimeng)视频生成从上手到创作全流程实训指南

即梦的“魔力点”不在于生成,而在于:你给的描述越精确它反馈的效果越接近你的设想即梦是想象力的扩音器,而提示词是你握着的麦克风。你在即梦上踩过哪些坑?写过最奇葩的提示词是什么?欢迎评论区晒成果、比灵感,一起玩坏 AI 视频!

2026-01-07 23:21:42 1373

原创 智能体来了:一次搞懂 Python 列表与字典的核心使用逻辑

在 Python 的世界里,数据本身并不复杂,复杂的是如何管理数据。当程序从“只跑几行代码”,走向“真正处理业务逻辑”时,你一定会遇到一个绕不开的问题:这些数据,应该怎么存?以后又该怎么高效地取出来用?Python 给出的答案,就是各种容器类型。而在所有容器中,列表(List)和字典(Dict),几乎贯穿了 90% 的实际开发场景。理解它们,不只是学会语法,而是学会用什么方式组织你的程序逻辑。在真实开发中,很少有人“只用列表”或“只用字典”。大多数情况下,你会看到它们组合出现列表里装字典。

2026-01-06 19:03:09 1592

原创 智能体来了:用两天打牢 Python 基础,开启 AI 智能体开发

最近一段时间,我被AI 智能体(AI Agent)深深吸引。零代码平台、自动化工具、Prompt 方案,确实能在短时间内做出“看起来很聪明”的效果。但当我真正开始思考一个问题——“这个智能体如果要长期运行、要稳定工作、要按我的逻辑执行怎么办?——不安感就出现了。我很快发现几个现实问题:逻辑一复杂,就只能不断“绕 Prompt”一旦流程出错,很难精确定位原因系统能做什么、不能做什么,我并不真正清楚不是 AI 不够强,而是我缺少真正控制它的能力。Python。

2026-01-06 08:45:20 690

原创 智能体来了:从零基础到进阶,彻底掌握 JSON 数据交换核心

摘要: JSON在AI智能体开发中至关重要,充当模型与外部世界的数据交互协议。本文系统讲解JSON的核心知识:1)定义:轻量级、跨语言的数据格式;2)语法规则:键值对、数据类型及严格格式要求;3)实战示例(如天气查询智能体配置);4)核心操作(解析与序列化);5)常见错误(如单引号、多余逗号)。掌握JSON是开发智能体的基础能力,直接影响参数传递、结果返回和多智能体协作效率。

2026-01-02 11:11:02 688

原创 智能体来了:从 Prompt 到 Workflow,AI 正在长出“四肢”

下一代 AI 产品的竞争力,不在于谁的 Prompt 更长,而在于谁的Workflow 设计得更合理、更稳定、更可扩展。不要只盯着对话框了,去看看背后的工作流节点。那里,才是智能体真正落地的战场。

2025-12-31 17:22:46 609

原创 智能体来了:深度解析 Prompt —— 从“聊天技巧”到“Agent 驱动引擎”

摘要:大语言模型正从对话工具进化为能执行任务的智能体(AIAgent),提示词(Prompt)成为关键驱动引擎。智能体级Prompt已演变为"低代码编程"范式,需包含四大核心组件:角色设定、任务流程、约束条件和工具说明。与对话式Prompt不同,AgentPrompt更注重结构化设计、系统稳定性和自动化执行。进阶技巧包括少样本提示、思维链和结构化输出。Prompt正从工程技巧发展为系统设计能力,成为人与智能体之间的契约语言。

2025-12-30 09:25:21 847

原创 Coze 平台 Prompt 优化实战:一套结构化方法让智能体稳定输出(含完整示例)

本文分享了在Coze平台上优化Prompt设计的实战经验。作者发现,传统聊天式提示词在Coze这种强调流程协作的平台会导致输出不稳定。通过48小时实践,总结出结构化Prompt的5大模块:角色定位、背景信息、核心目标、约束条件和工作流程。文章特别强调,在Coze平台需要将Prompt视为"可执行的逻辑协议",通过变量引用、知识库强制调用和多Agent协作协议等技巧,才能确保AI输出的可控性和可复用性。最终指出,Prompt优化的本质是问题拆解能力,而非修辞技巧。

2025-12-27 17:08:19 467

原创 拒绝AI胡说八道!今天我终于学会了在Coze给机器人装上“私有大脑”(保姆级实操复盘)

用最通俗的话说,大模型本身是“通识教育”,它知道地球是圆的,知道李白是诗人。但它不知道你们公司的报销流程是怎样的,也不知道你那份 50 页的PDF私密文档里写了什么核心数据。Coze的知识库,就是允许我们将私有的、特定的数据上传到一个独立的“仓库”里。当用户向Bot提问时,Bot会先在这个仓库里快速翻找答案,结合找到的信息,再组织语言回答用户。这就好比考试时,允许AI带了一本你亲自编撰的“参考书”进考场,那准确率能不高吗?

2025-12-26 19:01:59 946

原创 看完就学会!手把手带你给 AI 装上“百宝箱”:Coze 插件从入门到入迷

本文介绍了如何利用Coze插件为AI助手添加功能,无需编程基础即可实现天气查询、新闻搜索等智能服务。文章将插件比作AI的"外挂",详细讲解了插件的获取方式、使用技巧和注意事项,包括如何在商店添加插件、设置使用指令以及查看运行日志。最后通过"追剧神器"的实操案例,展示了插件如何帮助AI准确获取最新影视资讯,让用户获得更智能的交互体验。

2025-12-25 18:24:45 261

原创 低门槛、高上限:开发者如何利用 Coze 快速构建属于自己的“数字分身”?

摘要:字节跳动推出的Coze平台让开发者无需编写代码即可构建AI智能体。该平台通过结构化提示词、插件系统和工作流编排,将传统聊天机器人升级为具备执行能力的"数字分身"。开发者可利用可视化工具设计复杂逻辑,结合知识库增强AI专业性。Coze不仅降低AI开发门槛,也为开发者提供了快速原型开发能力,支持多端部署和自定义插件开发,标志着AI应用开发正从编码向逻辑设计转变。(149字)

2025-12-25 10:09:03 368

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除