矩阵快速幂以及其优化【华东交大课程】

矩阵快速幂以及其优化【华东交大课程】

快速幂基础:C++快速幂_Kicamon的博客-CSDN博客

矩阵快速幂就是在快速幂的基础上结合矩阵运算的用法,其用途较为广泛,可以很大程度上优化代码。

一、矩阵快速幂的实现

在矩阵快速幂中,我们利用类来存储矩阵及其运算法则。

我们先来看看代码的具体实现,再来讲解其语法。

struct Matrix
{
    ll a[N][N];
    Matrix()//构造函数
    {
        memset(a,0,sizeof a);
    }
    
    void init()//单元矩阵
    {
        for(int i = 0;i <= n;i++)
            a[i][i] = 1;
    }
    
    Matrix operator*(const Matrix& B)const//运算符*的重构
    {
        Matrix C;
        for(int i = 0;i < n;i++)
            for(int k = 0;k < n;k++)
                for(int j = 0;j < n;j++)
                    C.a[i][j] = (C.a[i][j] + a[i][k] * B.a[k][j]) % MOD;
        return C;
    }
    
    Matrix operator^(const int& t)const
    {
        Matrix A = (*this),res;
        res.init();
        int p = t;
        while(p)
        {
            if(p & 1)res = res * A;
            A = A * A;
            p >>= 1;
        }
        return res;
    }
};
  • 该结构体使用到的陌生语法有:构造函数运算符重载this指针,下边我们来看看着两个语法:

    • 构造函数:

      构造函数的特点是在结构体或者类中函数名与结构体名称相同且其声明前方没有返回值。它会在结构体创建的时候自动调用,完成对结构体的初始化。与之对应的是析构函数,作用是对结构体的清除,感兴趣的同学可以自行了解。

    • 运算符重载:

      • 运算发重载的含义:指的是将已有的运算符赋予新的功能,并通过识别使用是的数据类型和数目来判断采用哪种操作。c/c++中有许多运算符其实已经经过了重构,例如*,在将其作用于地址的时候,它的作用是解引用;将其用于两个数字的时候,它的作用是得到两数的乘积。运算符重载的存在,使得代码可以变得更加简洁易懂。
      • 在这里,我们将 * 运算符重载出求两矩阵的积的作用,将 ^ 运算符重载出求矩阵的次方的作用。当然,在 ^ 中我们使用了重载之后的 * 运算符。
    • this指针

      • this指针存在于成员函数中,是一个用来指向对象本身地址的指针。例如上面代码中,this指针将该指针所在的结构体本身赋值给了结构体A。

二、例题讲解

1、利用矩阵快速幂推导斐波那契数列

在这之前,我们推导斐波那契数列的方法是这样的:

f[1] = f[2] = 1;
for(int i = 3;i <= n;i++)
    f[i] = f[i - 1] + f[i - 2];

但是,学了矩阵快速幂之后,我们可以利用另一种方法来推导它:

在这里插入图片描述
所以我们可以利用矩阵快速幂先得到状态转换矩阵的n次方,再将其于初始矩阵相乘

#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N = 2, MOD = 1e9 + 7;

struct Matrix
{
    ll a[2][2];
    Matrix()
    {
        memset(a, 0, sizeof a);
    }

    void init()
    {
        for (int i = 0; i < 2; i++)
            a[i][i] = 1;
    }

    Matrix operator*(const Matrix& B)const
    {
        Matrix C;
        for (int i = 0; i < 2; i++)
            for (int k = 0; k < 2; k++)
                for (int j = 0; j < 2; j++)
                    C.a[i][j] = (C.a[i][j] + a[i][k] * B.a[k][j]) % MOD;
        return C;
    }

    Matrix operator^(const int& t)const
    {
        Matrix A = (*this), res;
        res.init();
        int p = t;
        while (p)
        {
            if (p & 1)res = res * A;
            A = A * A;
            p >>= 1;
        }
        return res;
    }
};

Matrix bace;

int main()
{
    bace.a[0][0] = 0, bace.a[0][1] = 1;
    bace.a[1][0] = 1, bace.a[1][1] = 1;
    int n;
    cin >> n;
    if (n == 1 || n == 2)puts("1");
    else
    {
        Matrix ans = bace ^ n;
        cout << ans.a[0][1] << endl;//f[n] = ans.a[0][0] * f[0] + ans.a[0][1] * f[1],f[0] = 0,f[1] = 1
    }
    return 0;
}

2、求Sn

我们先来看看式子的推导过程:

在这里插入图片描述

#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N = 2, MOD = 1e9 + 7;

struct Matrix
{
    ll a[2][2];
    Matrix()
    {
        memset(a, 0, sizeof a);
    }

    void init()
    {
        for (int i = 0; i < 2; i++)
            a[i][i] = 1;
    }

    Matrix operator*(const Matrix& B)const
    {
        Matrix C;
        for (int i = 0; i < 2; i++)
            for (int k = 0; k < 2; k++)
                for (int j = 0; j < 2; j++)
                    C.a[i][j] = (C.a[i][j] + a[i][k] * B.a[k][j]) % MOD;
        return C;
    }

    Matrix operator^(const int& t)const
    {
        Matrix A = (*this), res;
        res.init();
        int p = t;
        while (p)
        {
            if (p & 1)res = res * A;
            A = A * A;
            p >>= 1;
        }
        return res;
    }
};

Matrix bace;

int main()
{
    int a, b, n, m;
    cin >> a >> b >> n >> m;
    bace.a[0][0] = a, bace.a[0][1] = b;
    bace.a[1][0] = 1, bace.a[1][1] = a;
    Matrix t = bace ^ n;
    int Xn = t.a[0][0];
    cout << (Xn * 2) % MOD << endl;
    return 0;
}

3、梦想之弧

先看看推导过程:

在这里插入图片描述

#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;

int A0, AX, AY, B0, BX, BY;

struct Matrix
{
	int a[6][6];

	Matrix()
	{
		memset(a, 0, sizeof a);
	}

	void init()
	{
		for (int i = 0; i < 5; i++)
			a[i][i] = 1;
	}

	Matrix operator*(const Matrix& B)const
	{
		Matrix C;
		for (int i = 0; i < 5; i++)
			for (int k = 0; k < 5; k++)
				for (int j = 0; j < 5; j++)
					C.a[i][j] = (C.a[i][j] + a[i][k] * B.a[k][j]) % MOD;
		return C;
	}

	Matrix operator^(const int& t)const
	{
		Matrix A = (*this), res;
		res.init();
		int p = t;
		while (p)
		{
			if (p & 1)res = res * A;
			A = A * A;
			p >>= 1;
		}
		return res;
	}
};

Matrix bace, once;

int main()
{
	int n;
	cin >> n;
	cin >> A0 >> AX >> AY;
	cin >> B0 >> BX >> BY;

	bace.a[0][0] = AX * BX, bace.a[0][4] = 1;
	bace.a[1][0] = AX * BY, bace.a[1][1] = AX;
	bace.a[2][0] = AY * BX, bace.a[2][2] = BX;
	bace.a[3][0] = AY * BY, bace.a[3][1] = AY, bace.a[3][2] = BY, bace.a[3][3] = 1;
	bace.a[4][4] = 1;

	int a1 = A0 * AX + AY, b1 = B0 * BX + BY;
	once.a[0][0] = a1 * b1, once.a[0][1] = a1, once.a[0][2] = b1, once.a[0][3] = 1, once.a[0][4] = A0 * B0;

	Matrix ans = once * (bace ^ (n - 1));
	cout << ans.a[0][4] << endl;
	return 0;
}

三、矩阵乘法的优化

在上边我们用到的矩阵乘法是三重循环的,时间复杂度为O(n3),在进行较大的矩阵运算时便会显得吃力。下边我们介绍两种方法来对矩阵的乘法进行优化。

1、省去为0的运算

Matrix operator*(const Matrix& B)const
{
    Matrix C;
    for(int i = 0;i < n;i++)
    {
        for(int k = 0;k < n;k++)
        {
            if(!a[i][k])continue;//为0时乘积为0,直接跳过
            for(int j = 0;j < n;j++)
            {
                C.a[i][j] = (C.a[i][j] + a[i][k] * B.a[k][j]) % MOD;
            }
        }
    }
}

2、利用二进制优化

这个方法需要用到模板类bitset,我们先来学习一下待会要用到的语法。

  • bitset是将数据用二进制储存下来并且进行编辑。在定义的时候,我们需要规定其长度,例如bitset<10>a,就是创建一个十位的二进制空间a。
bitset<10>a;//创建,a的初始状态为:0000000000

a.set(3);//将第3位变成1,此时a的状态为:0000000100

a.reset();//将所有位清零,此时a的状态为:0000000000

a.set(4),a.set(5),a.set(2);

a.count();//统计a中的1的数量,此时a的状态为:0000011010,a.count() = 3

在掌握以上语法之后,我们就可以来看看它的优化方法了:

首先我们创建两个数组:

bitset<1000>bt[805][3],ct[805][3];

在这里插入图片描述

然后,我们来看看它的运算过程:

在这里插入图片描述

如此如此便可得到结果,我们来看看最终的代码,这时候的时间复杂度为O(n2):

#include<iostream>
#include<bitset>
using namespace std;
const int N = 805;
bitset<1000>bt[N][3], ct[N][3];

int main()
{
	int n, c;
	cin >> n;
	for (int i = 1; i <= n; i++)
		for (int j = 0; j < 3; j++)
			bt[i][j].reset(), ct[i][j].reset();

	for(int i = 1;i <= n;i++)
		for (int j = 1; j <= n; j++)
		{
			cin >> c;
			bt[i][c % 3].set(j);
		}

	for(int i = 1;i <= n;i++)
		for (int j = 1; j <= n; i++)
		{
			cin >> c;
			ct[j][c % 3].set(i);
		}

	for (int i = 1; i <= n; i++)
	{
		for (int j = 1; j <= n; j++)
		{
			int c = ((bt[i][1] & ct[j][1]).count()
				+ 2 * (bt[i][1] & ct[j][2]).count()
				+ 2 * (bt[i][2] & ct[j][1]).count()
				+ 2 * (bt[i][2] & ct[j][2]).count()) % 3;
			cout << c << ' ';
		}
		cout << endl;
	}
	return 0;

}

四、矩阵快速幂加速DP

1、Clarke and digits

这道题可是重量级。它运用的是矩阵快速幂和数位DP(数位DP将在之后吉吉会详细地讲解)。

首先 ,我们要考虑的是如何表示状态,根据题干,我们可以提取三个信息:长度、模数、数位。

我们创建一个三位数组,每一维度分别表示一条信息。如==a[i] [j] [k]==表示的长度为i、模数为j且尾数为k的数的数量。

下面来看看它的表示原理和状态更新的方式:

在这里插入图片描述

但是矩阵应该由二维数组表示,那我们开看看,能不能通过某种方式来减去一个维度。答案当然是可以的,先来看看压缩之后的结果:

a[i] [j] [k] = a[i] [j * 10 + k]

原理何在?我们知道,j是对7取模之后的结果,所以它的范围为[0,7];k是尾数,尾数即最后一位数,所以它的范围为[0,9]。所以数组a的两维可以表示为一个7 * 10的矩阵,而上图的压缩方法是将其变成了一个1 * 70的矩阵,0 ~ 9表示原来的第一行的状态,10 ~ 19表示原来的第二行的状态,以此类推。那么,我们就得到一个二维数组,即我们需要的矩阵了。

学到这里,结果就明了了,构建完状态矩阵和初始矩阵之后,其他的套模板即可:

状态矩阵:

void init(int k)
{
    memset(bace.a,0,sizeof bace.a);
    for(int i = 0;i < 70;i++)
    {
        int x = i / 10,y = i % 10;//余数和尾数
        for(int j = 0;j < 70;j++)
        {
            int a = j / 10,b = j % 10;//上一状态的余数和尾数
            if((a * 10 + y) == x && y + b != k)
                bace.a[j][i] = 1;
        }
    }
}

初始矩阵:

for(int i = 1;i < 10;i++)once.a[0][(i % 7) * 10 + i] = 1;

完整代码如下:

#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N = 71, MOD = 1e9 + 7;

struct Matrix
{
    int a[N][N];
    Matrix()
    {
        memset(a, 0, sizeof a);
    }

    void init()
    {
        for (int i = 0; i < N; i++)
            for (int j = 0; j < N; j++)
                a[i][j] = (i == j);
    }

    Matrix operator*(const Matrix& B)const
    {
        Matrix C;
        for (int i = 0; i < N; i++)
            for (int k = 0; k < N; k++)
                for (int j = 0; j < N; j++)
                    C.a[i][j] = (C.a[i][j] + a[i][k] * B.a[k][j]) % MOD;
        return C;
    }

    Matrix operator^(const int& t)const
    {
        Matrix A = (*this), res;
        res.init();
        int p = t;
        while (p)
        {
            if (p & 1)res = res * A;
            A = A * A;
            p >>= 1;
        }
        return res;
    }
};

Matrix bace, once;

void init(int k)
{
    memset(bace.a, 0, sizeof bace.a);
    for (int i = 0; i < 70; i++)
    {
        int x = i / 10, y = i % 10;
        for (int j = 0; j < 70; j++)
        {
            int a = j / 10, b = j % 10;
            if ((a * 10 + y) % 7 == x && y + b != k)
                bace.a[j][i] = 1;
        }
    }

    for (int i = 0; i < 10; i++)bace.a[i][70] = 1;
    bace.a[70][70] = 1;
}

int main()
{
    memset(once.a, 0, sizeof once.a);
    for (int i = 1; i < 10; i++)once.a[0][(i % 7) * 10 + i] = 1;
    int t;
    cin >> t;
    while (t--)
    {
        int l, r, k;
        cin >> l >> r >> k;
        init(k);
        Matrix ans1 = once * (bace ^ (l - 1));
        Matrix ans2 = once * (bace ^ r);
        ll ans = ans2.a[0][70] - ans1.a[0][70];
        ans = (ans % MOD + MOD) % MOD;
        cout << ans << endl;
    }
    return 0;
}

2、我也不知道这题叫啥,因为找不到

这里没有什么变编程上的语法知识,我们直接看看推导过程即可:

在这里插入图片描述

以下是费马小定理的衍生:

在这里插入图片描述

我们在求Kn时便可对p-1取模,防止数据过大

代码如下:

#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N = 3;
int n, a, b, c, p;

struct Matrix
{
	int a[N][N];

	Matrix()
	{
		memset(a, 0, sizeof a);
	}

	void init()
	{
		for (int i = 0; i < N; i++)
			a[i][i] = 1;
	}

	Matrix operator*(const Matrix& B)const
	{
		Matrix C;
		for (int i = 0; i < N; i++)
			for (int k = 0; k < N; k++)
				for (int j = 0; j < N; j++)
					C.a[i][j] = (C.a[i][j] + a[i][k] * B.a[k][j]) % p;
		return C;
	}

	Matrix operator^(const int& t)const
	{
		Matrix A = (*this), res;
		int p = t;
		res.init();
		while (p)
		{
			if (p & 1)res = res * A;
			A = A * A;
			p >>= 1;
		}
		return res;
	}
};

ll pow(int a, int b)
{
	int ans = 1;
	while (b)
	{
		if (b & 1)ans = (ans * a) % p;
		a = (a * a) % p;
		b >>= 1;
	}
	return 1;
}

Matrix bace, once;

void init()
{
	memset(bace.a, 0, sizeof bace.a);
	memset(once.a, 0, sizeof once.a);
	bace.a[0][0] = c, bace.a[0][1] = 1, bace.a[0][2] = 1;
	bace.a[1][0] = 1, bace.a[2][2] = 1;
	once.a[0][0] = b, once.a[1][0] = 0, once.a[2][0] = b;
}

int main()
{
	cin >> n >> a >> b >> c >> p;
	if (n == 1)puts("1");
	else if (n == 2)cout << pow(a, b) << endl;
	else
	{
		p--;
		Matrix ans = bace ^ (n - 2);
		p++;
		ans = once * ans;
		cout << ans.a[0][0] << endl;
	}
	return 0;
}

在这里插入图片描述

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值