7-5 区块反转 (25分)
给定一个单链表 L,我们将每 K 个结点看成一个区块(链表最后若不足 K 个结点,也看成一个区块),请编写程序将 L 中所有区块的链接反转。例如:给定 L 为 1→2→3→4→5→6→7→8,K 为 3,则输出应该为 7→8→4→5→6→1→2→3。
输入格式:
每个输入包含 1 个测试用例。每个测试用例第 1 行给出第 1 个结点的地址、结点总个数正整数 N (≤10
5
)、以及正整数 K (≤N),即区块的大小。结点的地址是 5 位非负整数,NULL 地址用 −1 表示。
接下来有 N 行,每行格式为:
Address Data Next
其中 Address 是结点地址,Data 是该结点保存的整数数据,Next 是下一结点的地址。
输出格式:
对每个测试用例,顺序输出反转后的链表,其上每个结点占一行,格式与输入相同。
输入样例:
00100 8 3
71120 7 88666
00000 4 99999
00100 1 12309
68237 6 71120
33218 3 00000
99999 5 68237
88666 8 -1
12309 2 33218
输出样例:
71120 7 88666
88666 8 00000
00000 4 99999
99999 5 68237
68237 6 00100
00100 1 12309
12309 2 33218
33218 3 -1
#include <iostream>
#include <vector>
#include <stdio.h>
#include <algorithm>
#include <unordered_map>
using namespace std;
#define min(a,b) (a>b?b:a)
int main(){
int start,num,k;
scanf("%d %d %d\n",&start,&num,&k);
vector<pair<int,int>> dp(num);
unordered_map<int,pair<int,int>> order;//data,next;
int cur,data,next;
for(int i=0;i<num;i++){
scanf("%d %d %d\n",&cur,&data,&next);
order[cur]={data,next};
}
cur=start;
int count=0;
while(cur!=-1){
dp[count++]={cur,order[cur].first};
cur=order[cur].second;
}
dp.resize(count);
order.clear();
int time=num/k;
if(num%k!=0) time++;
for(int i=0;i<time;i++){
reverse(dp.begin()+i*k,dp.begin()+min((i+1)*k,count));
}
reverse(dp.begin(),dp.end());
for(int i=0;i<count-1;i++){
printf("%0.5d %d %0.5d\n",dp[i].first,dp[i].second,dp[i+1].first);
}
printf("%0.5d %d %d\n",dp[count-1].first,dp[count-1].second,-1);
return 0;
}