【数学物理方法】李政道《物理学中的数学方法》读书笔记

《物理学中的数学方法》一书是李政道在哥大讲学的讲稿。笔者在图书馆借到难得的原本,怀着激动的心情学习整理一番。由于笔者是数理小白,所以内容包括但不限于书本内容,还会有许多个人原先不清晰的东西并加整理。

另外,由于时代性,在部分章节中原书的表述相比较为复杂,笔者参考目前表述方式加以修改;缺漏或错误也会结合目前流行版本加以更正或补充。当然,总体思路仍沿袭原书,不然标题就该改了。

那就这些?数物毕竟还是有趣且重要的

目录

第一章 矢量与张量分析

$1 矢量代数

1.不同笛卡尔坐标系之间的变换

2.矢量的导数

3.曲率

第六章 复变函数论方法

$1 解析函数.柯西定理

1.解析的定义

2.解析的条件

3.柯西定理及其推论

$2 泰勒和洛朗级数.解析延拓


第一章 矢量与张量分析

$1 矢量代数

1.不同笛卡尔坐标系之间的变换

假设在一右旋三维笛卡尔坐标系U中一点的坐标为P_{1}\left ( x_{1},x_{2},x_{3} \right ),在另一右旋三维笛卡尔坐标系U’中坐标为P_{1}\left ( x'_{1},x'_{2},x'_{3} \right ),则有

x'_{i}=\sum_{j=1}^{3}u_{ij}x_{j}

其中i=1,2,3.

此时克罗内克符号需满足:

\sum_{i-1}^{3}u_{ij}u_{ik}=\sum_{i-1}^{3}u_{ji}u_{ki}=\delta _{jk}=\begin{Bmatrix} 1 & i=j\\ 0 & i\neq j \end{Bmatrix}

补充知识:罗德里格旋转公式

三维坐标系下,若原向量\vec{v}绕给定转轴转动\theta角度后,新向量可表示为

\vec{v'}=cos\theta \vec{v}+(1-cos\theta )(\vec{v}\cdot \vec{k})\vec{k}+sin\theta \vec{k}\times \vec{v}

=R\cdot \vec{v}

其中k是给定转轴方向的单位向量,而矩阵

R=cos\theta I_{3\times 3}+(1-cos\theta)\begin{bmatrix} k1\\ k2\\ k3 \end{bmatrix}\begin{bmatrix} k1 & k2 & k3 \end{bmatrix}+sin\theta \begin{bmatrix} 0 & -k3 & k2\\ k3 & 0 & -k1\\ -k2 & k1 & 0 \end{bmatrix}

是任意向量在向量k上的投影矩阵.

2.矢量的导数

如果有某个坐标依赖于参数的矢量,则通过对其按坐标微商构造的新矢量成为矢量的导数.

例1 证明数量积是关于坐标系旋转的不变量,即标量

首先,可从几何方面考虑:点乘在几何上仅与模长和夹角有关,二者旋转皆不变;

其次,由公式(1.1)

\vec{A}\cdot \vec{B}=\sum_{i=1}^{3}A_{i}B_{i}=\sum_{j,k}^{}(\sum_{i=1}^{3}u_{ij}u_{ik})A_{j}B_{k}=\sum \delta _{jk}A_{j}B_{k}=\sum_{j=1}^{3}A_{j}B_{j}

即证.

例2 能量守恒的一种形式

\vec{F}=m\frac{\mathrm{d\vec{v}} }{\mathrm{d} t}

同点乘v,

\vec{F}\cdot \vec{v}=m\sum_{i=1}^{3}\frac{\mathrm{dv_{i}} }{\mathrm{d} t}v_{i}=m\sum_{i=1}^{3}\frac{\mathrm{d} }{\mathrm{d} t}(\frac{v_{i}^{2}}{2})=\frac{\mathrm{d} }{\mathrm{d} t}(\frac{mv^{2}}{2})

特别地,当F=0,动能为常数.

定理1.1

任一坐标中,能给出三个数\left ( A_{1},A_{2},A_{3} \right ),使其对于所有矢量B都能有\sum_{i=1}^{3}A_{i}B_{i}为标量,则

\vec{A}=\left ( A_{1},A_{2},A_{3} \right )为矢量

证明:

因为对于任一矢量B,有

B_{i}^{'}=\sum_{j=1}^{3}u_{ij}B_{j}

\sum_{i=1}^{3}A_{i}^{}B_{i}^{}=\sum_{i=1}^{3}A_{i}^{'}B_{i}^{'}=\sum_{i=1}^{3}A_{i}^{'}\sum_{j=1}^{3}u_{ij}B_{j}=\sum_{i=1}^{3}u_{ij}A_{i}^{'}\sum_{j=1}^{3}B_{j}

A_{j}=\sum_{k=1}^{3}u_{kj}A_{k}^{'}

由于A_{j}=\sum_{k=1}^{3}u_{kj}A_{k}^{'},则对上式同乘并对j求和,则

\sum_{j=1}^{3}u_{ij}A_{j}=\sum_{j=1}^{3}u_{ij}u_{kj}\sum_{k=1}^{3}A_{k}^{'}=\sum_{k=1}^{3}\delta _{ij}A_{k}^{'}=A_{i}^{'}

即由假设(\sum_{i=1}^{3}A_{i}^{}B_{i}^{}=\sum_{i=1}^{3}A_{i}^{'}B_{i}^{'},为同一标量)证明对于相同的坐标系旋转,任何矢量变化规律相同.

至于矢量叉乘的定义,则可参考https://www.cnblogs.com/vive/p/4565282.html

(例3例4写好没了不想补了,直接曲率吧)

3.曲率

假定\tau为与空间质点运动轨道相切的单位矢量,微分则有

a\equiv \dot{v}=\dot{(|v|\tau) }=\frac{d|v|}{dt}\tau +|v|\dot{\tau }

|v|=\frac{dr}{dt},1=|v|\frac{dt}{dr},\dot{\tau }=|v|\frac{d\tau }{dr}

\tau \cdot \tau =1\rightarrow \tau \cdot \dot{\tau } =0,引进法矢量

n=\frac{\dot{\tau }}{|\dot{\tau }|}=\frac{\dot{\tau }}{|v||\frac{d\tau }{dr}|}

a=n|v|^{2}|\frac{d\tau }{dr}|+\tau |\dot{v}|

这也解释了曲率半径(第一曲率的倒数)R=\frac{1}{|\frac{d\tau }{ dr}|}为无穷即\frac{d\tau }{dr}=0处为曲线的拐点,即速度方向仅沿切向.

第三个单位矢量:复法矢量b=\tau \times n

由于\dot{b}=\dot{\tau }\times n+\tau \times \dot{n}=\tau \times \dot{n}(切矢量的微商与法矢量平行,反之则不一定),故\dot{b}\tau垂直;又\dot{b}\times b=0,故\dot{b}与b垂直,则\dot{b}与n平行.

定理 1.2 全曲率等于矢量dn/dr的模

定义曲线挠率(或称第二曲率)

T=|\frac{db}{dr}|

其中db=d\theta,\theta为切法矢量所张平面的平面转动角.

全曲率为第一第二曲率平方和开根。

C=\sqrt{|\frac{d\tau}{dr}|^{2}+|\frac{db}{dr}|^{2}}=|\frac{dn}{dr}|

证明:

由b的定义式循环交换,有n=b\times \tau

取微分,有\frac{dn}{dr}=\frac{db}{dr}\times \tau +b\times \frac{d\tau}{dr}

分析等式右侧,\frac{db}{dr}\frac{d\tau}{dr}与n平行,则右侧第一项与b平行、第二项与\tau平行,两者互相垂直,则等式左侧的模就是右侧两式平方和开根,也就是C的定义,即C=|\frac{dn}{dr}|.

中间那几章呢?鸽了(划掉)由于是假期看的但只是看了,所以等课程学到再说吧

第六章 复变函数论方法

$1 解析函数.柯西定理

1.解析的定义

f(z)在某个区域R内解析,若它:

1)在此域内单值;

2)有限;

3)在此域内任一点\lim_{\Delta z\rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}存在,即可导.

2.解析的条件

1.柯西-黎曼(C-R)条件

    若上述极限存在,任意方式下极限趋于同一值。则对于\lim_{\Delta z\rightarrow 0}\frac{\Delta w}{\Delta z}=\lim_{\Delta z\rightarrow 0}\frac{\Delta u+i\Delta v}{\Delta x+i\Delta y},分别令\Delta x,\Delta y=0,得到的两个极限相等。对应实部虚部,则有

\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}

这是可导的必要条件,所以是解析的必要条件

2.另一必要条件

    在整个区域中,u和v的四个一阶偏导数都存在且连续.

1+2即为充要条件

3.再往后推一步

对C-R条件微分,有

 即\Delta u=0 ,同理\Delta v=0,即解析函数的实部虚部分别为调和函数。

3.柯西定理及其推论

1.柯西定理

如果函数在区域R内解析,那么它沿着R内的任一闭合围道C的积分都为0.

这里原书的证明我确定是错的。以下是更好的条件下的证明

这说明什么呢? 解析函数在其解析区域内其实各点数值密切相关。这个关联性的体现,于积分形式便是Cauchy定理,于微分形式便是C-R方程.

2.柯西积分公式

如果函数在区域R内解析,在闭合围道C上有界,则在R内任一点z_{0}上的函数值为

f(z_{0})=\frac{1}{2\pi i}\oint_{c} \frac{f(z)}{z-z_{0}} d z

证明如下

 这做了什么呢?将区域内点上的函数值与围道上的函数值联系起来了。

进一步,我们可以构造其导数

{f}'(z_{0})=\lim_{\delta\rightarrow 0}\frac{f\left(z_{0}+\delta\right)-f\left(z_{0}\right)}{\delta}=\frac{1}{2\pi i}\oint \frac{f(z) d z}{\left(z-z_{0}\right)^{2}}

于是子子孙孙无穷尽也,解析函数任意阶导数都存在,且都可以用柯西积分公式表示,在给定点上可微分无限次.

$2 泰勒和洛朗级数.解析延拓

TBC

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值