HDU snacks (线段树 + dfs序)

Problem Description

百度科技园内有个零食机,零食机之间通过条路相互连通。每个零食机都有一个值,表示为小度熊提供零食的价值。

由于零食被频繁的消耗和补充,零食机的价值会时常发生变化。小度熊只能从编号为0的零食机出发,并且每个零食机至多经过一次。另外,小度熊会对某个零食机的零食有所偏爱,要求路线上必须有那个零食机。

为小度熊规划一个路线,使得路线上的价值总和最大。

 

 

Input

输入数据第一行是一个整数,表示有组测试数据。

对于每组数据,包含两个整数,表示有个零食机,次操作。

接下来行,每行两个整数和,表示编号为的零食机与编号为的零食机相连。

接下来一行由个数组成,表示从编号为0到编号为的零食机的初始价值。

接下来行,有两种操作:,表示编号为的零食机的价值变为;,表示询问从编号为0的零食机出发,必须经过编号为零食机的路线中,价值总和的最大值。

本题可能栈溢出,辛苦同学们提交语言选择c++,并在代码的第一行加上:

`#pragma comment(linker, "/STACK:1024000000,1024000000") `

 

 

Output

对于每组数据,首先输出一行”Case #?:”,在问号处应填入当前数据的组数,组数从1开始计算。

对于每次询问,输出从编号为0的零食机出发,必须经过编号为零食机的路线中,价值总和的最大值。

Sample Input

1
6 5
0 1
1 2
0 3
3 4
5 3
7 -5 100 20 -5 -7
1 1
1 3
0 2 -1
1 1
1 5

Sample Output

Case #1:
102
27
2
20

思路:

首先dfs序,dfs序之后,我们顺便把每个点到根节点的距离求出来。

dfs 序之后,我们得到了一个两个时间戳,一个进,一个出,

这个时间戳和线段树的区间即为类似,

比如一个节点,,他的孩子的时间戳一定包含于这个节点的时间戳。

 

我们的线段树用进入的时间戳建树。

然后维护区间最大值,就是当前节点到根节点的价值。。

当我们修改节点的时候,当前节点和节点和孩子的价值都会改变,

所以这就成 了一个线段树 修改区间,查询区间的问题了。

 

 

这个题我  WA 了几个小时,是因为数据时 long long,

而我的INF 是 int 的,进行比较,不能得出来正确答案。

导致一直wa

#pragma comment(linker, "/STACK:1024000000,1024000000") 
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define mem(x,v) memset(x,v,sizeof(x)) 
#define rep(i,a,b)  for (int i = a; i < b; i++)
#define per(i,a,b)  for (int i = a; i > b; i--)
#define low(x) (x & (-x))
using namespace std;
typedef long long LL;
const double EPS = 1e-10;
const long long INF = 1e18;
const int N = 1e5+10;
const int M = 1e5+10;
struct node{
	int v,next;
}f[N*2];
struct seg{
	int l,r,a,b;
	LL c,w;
}g[N*4];
int n,m,t;
int cnt,l[N],r[N],tim,head[N],d[N];
LL dis[N],a[N],val;
void Add_edge(int u, int v){
	cnt++;
	f[cnt].next = head[u];
	head[u] = cnt;
	f[cnt].v = v;
	return;
}
void push_down(int p){
	if (g[p].c == 0) return;
	g[g[p].l].w += g[p].c;
	g[g[p].r].w += g[p].c;
	g[g[p].l].c += g[p].c;
	g[g[p].r].c += g[p].c;
	g[p].c = 0;
	return;
}
void build(int p, int a, int b){
	g[p].a =a; g[p].b = b; g[p].c = 0;
	if (a + 1 == b){
		g[p].w = dis[d[a]];
		return;
	}	
	int m = (a + b) / 2;
	t++; g[p].l = t; build(t,a,m);
	t++; g[p].r = t; build(t,m,b);
	g[p].w = max(g[g[p].l].w,g[g[p].r].w);
	return;
}
void Insert(int p, int x, int y, int z){
	if (x <= g[p].a && y >= g[p].b - 1){
		g[p].w += z;
		g[p].c += z;
		return;
	}
	push_down(p);
	int m = (g[p].a + g[p].b) / 2;
	if (x < m) Insert(g[p].l, x,y,z);
	if (y >= m) Insert(g[p].r,x,y,z);
	g[p].w = max(g[g[p].l].w, g[g[p].r].w);
	return;
}

LL Qurey(int p, int x, int y){
	LL ans = -INF;
	if (x <= g[p].a && y >= g[p].b-1){
		return g[p].w;
	}
	push_down(p);
	int m = (g[p].a + g[p].b) / 2;
	if (x < m) ans = max(ans,Qurey(g[p].l,x,y));
	if (y >= m) ans = max(ans, Qurey(g[p].r,x,y));
	return ans;
}
void dfs(int u, int fa){
	l[u] = ++tim;
	d[tim] = u; 
	for (int i = head[u]; i != -1; i = f[i].next){
		int v = f[i].v;
		if (v == fa) continue;
		dis[v] = dis[u] + a[v];
	    dfs(v,u);
	}
	r[u] = tim;
	return;
}

int main(){
	int _;
	cin>>_;
	int num = 1;
	while(_--){
		scanf("%d%d",&n,&m);
		mem(head,-1); cnt = -1;
		rep(i,1,n){
			int x,y;
			scanf("%d%d",&x,&y);
			Add_edge(x,y);
			Add_edge(y,x);
		}
		rep(i,0,n){
			scanf("%I64d",&a[i]);
		}
		tim = 0;
		dis[0] = a[0];//是多组数据,每次要注意初始情况,,这样写就没事。
		dfs(0,0);
		t = 1;
		build(1,1,n+1);
		printf("Case #%d:\n",num++);
		int op,x;
		rep(i,0,m){
			scanf("%d",&op);
			if (op == 0){
				scanf("%d%I64d",&x,&val);
				
				Insert(1,l[x],r[x],val - a[x]);
				a[x] = val;
			} else {
				scanf("%d",&x); 
				LL ans = Qurey(1,l[x],r[x]);
				printf("%I64d\n",ans);
			}
		}

	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值