Problem Description
百度科技园内有个零食机,零食机之间通过条路相互连通。每个零食机都有一个值,表示为小度熊提供零食的价值。
由于零食被频繁的消耗和补充,零食机的价值会时常发生变化。小度熊只能从编号为0的零食机出发,并且每个零食机至多经过一次。另外,小度熊会对某个零食机的零食有所偏爱,要求路线上必须有那个零食机。
为小度熊规划一个路线,使得路线上的价值总和最大。
Input
输入数据第一行是一个整数,表示有组测试数据。
对于每组数据,包含两个整数,表示有个零食机,次操作。
接下来行,每行两个整数和,表示编号为的零食机与编号为的零食机相连。
接下来一行由个数组成,表示从编号为0到编号为的零食机的初始价值。
接下来行,有两种操作:,表示编号为的零食机的价值变为;,表示询问从编号为0的零食机出发,必须经过编号为零食机的路线中,价值总和的最大值。
本题可能栈溢出,辛苦同学们提交语言选择c++,并在代码的第一行加上:
`#pragma comment(linker, "/STACK:1024000000,1024000000") `
Output
对于每组数据,首先输出一行”Case #?:”,在问号处应填入当前数据的组数,组数从1开始计算。
对于每次询问,输出从编号为0的零食机出发,必须经过编号为零食机的路线中,价值总和的最大值。
Sample Input
1 6 5 0 1 1 2 0 3 3 4 5 3 7 -5 100 20 -5 -7 1 1 1 3 0 2 -1 1 1 1 5
Sample Output
Case #1: 102 27 2 20
思路:
首先dfs序,dfs序之后,我们顺便把每个点到根节点的距离求出来。
dfs 序之后,我们得到了一个两个时间戳,一个进,一个出,
这个时间戳和线段树的区间即为类似,
比如一个节点,,他的孩子的时间戳一定包含于这个节点的时间戳。
我们的线段树用进入的时间戳建树。
然后维护区间最大值,就是当前节点到根节点的价值。。
当我们修改节点的时候,当前节点和节点和孩子的价值都会改变,
所以这就成 了一个线段树 修改区间,查询区间的问题了。
这个题我 WA 了几个小时,是因为数据时 long long,
而我的INF 是 int 的,进行比较,不能得出来正确答案。
导致一直wa
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define mem(x,v) memset(x,v,sizeof(x))
#define rep(i,a,b) for (int i = a; i < b; i++)
#define per(i,a,b) for (int i = a; i > b; i--)
#define low(x) (x & (-x))
using namespace std;
typedef long long LL;
const double EPS = 1e-10;
const long long INF = 1e18;
const int N = 1e5+10;
const int M = 1e5+10;
struct node{
int v,next;
}f[N*2];
struct seg{
int l,r,a,b;
LL c,w;
}g[N*4];
int n,m,t;
int cnt,l[N],r[N],tim,head[N],d[N];
LL dis[N],a[N],val;
void Add_edge(int u, int v){
cnt++;
f[cnt].next = head[u];
head[u] = cnt;
f[cnt].v = v;
return;
}
void push_down(int p){
if (g[p].c == 0) return;
g[g[p].l].w += g[p].c;
g[g[p].r].w += g[p].c;
g[g[p].l].c += g[p].c;
g[g[p].r].c += g[p].c;
g[p].c = 0;
return;
}
void build(int p, int a, int b){
g[p].a =a; g[p].b = b; g[p].c = 0;
if (a + 1 == b){
g[p].w = dis[d[a]];
return;
}
int m = (a + b) / 2;
t++; g[p].l = t; build(t,a,m);
t++; g[p].r = t; build(t,m,b);
g[p].w = max(g[g[p].l].w,g[g[p].r].w);
return;
}
void Insert(int p, int x, int y, int z){
if (x <= g[p].a && y >= g[p].b - 1){
g[p].w += z;
g[p].c += z;
return;
}
push_down(p);
int m = (g[p].a + g[p].b) / 2;
if (x < m) Insert(g[p].l, x,y,z);
if (y >= m) Insert(g[p].r,x,y,z);
g[p].w = max(g[g[p].l].w, g[g[p].r].w);
return;
}
LL Qurey(int p, int x, int y){
LL ans = -INF;
if (x <= g[p].a && y >= g[p].b-1){
return g[p].w;
}
push_down(p);
int m = (g[p].a + g[p].b) / 2;
if (x < m) ans = max(ans,Qurey(g[p].l,x,y));
if (y >= m) ans = max(ans, Qurey(g[p].r,x,y));
return ans;
}
void dfs(int u, int fa){
l[u] = ++tim;
d[tim] = u;
for (int i = head[u]; i != -1; i = f[i].next){
int v = f[i].v;
if (v == fa) continue;
dis[v] = dis[u] + a[v];
dfs(v,u);
}
r[u] = tim;
return;
}
int main(){
int _;
cin>>_;
int num = 1;
while(_--){
scanf("%d%d",&n,&m);
mem(head,-1); cnt = -1;
rep(i,1,n){
int x,y;
scanf("%d%d",&x,&y);
Add_edge(x,y);
Add_edge(y,x);
}
rep(i,0,n){
scanf("%I64d",&a[i]);
}
tim = 0;
dis[0] = a[0];//是多组数据,每次要注意初始情况,,这样写就没事。
dfs(0,0);
t = 1;
build(1,1,n+1);
printf("Case #%d:\n",num++);
int op,x;
rep(i,0,m){
scanf("%d",&op);
if (op == 0){
scanf("%d%I64d",&x,&val);
Insert(1,l[x],r[x],val - a[x]);
a[x] = val;
} else {
scanf("%d",&x);
LL ans = Qurey(1,l[x],r[x]);
printf("%I64d\n",ans);
}
}
}
return 0;
}