Description
N柱砖,希望有连续K柱的高度是一样的. 你可以选择以下两个动作 1:从某柱砖的顶端拿一块砖出来,丢掉不要了. 2:从仓库中拿出一块砖,放到另一柱.仓库无限大. 现在希望用最小次数的动作完成任务.
Input
第一行给出N,K. (1 ≤ k ≤ n ≤ 100000), 下面N行,每行代表这柱砖的高度.0 ≤ hi ≤ 1000000
Output
最小的动作次数
Sample Input
5 3
3
9
2
3
1
Sample Output
2
思路:
只要找到中位数就可以了。 可以用两个 set 维护一下。用两个set 找到中位数,并且记录两个set 的 数字和。然后作差就可以了。
还可以用主席树搞一下。
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
int a[N],mid,n,m,k;
long long num1,num2,ans = 0x7f7f7f7f7f7f7f;
multiset <int> d1,d2;
multiset <int>::iterator t;
int main(){
printf("%lld\n",ans);
scanf("%d%d",&n,&k);
for (int i = 1; i <= n; ++i)
scanf("%d",&a[i]);
d2.insert(a[1]); mid = a[1]; num2 += a[1];
for (int i = 2; i <= n; ++i){
if (i > k){
if (a[i-k] >= mid) {
d2.erase(d2.find(a[i-k])); num2 -= a[i-k];
} else{
d1.erase(d1.find(a[i-k])); num1 -= a[i-k];
}
}
{
if (a[i] >= mid) {
d2.insert(a[i]); num2 += a[i];
} else {
d1.insert(a[i]); num1 += a[i];
}
while(d1.size() + 1 < d2.size()){
t = d2.begin();
d2.erase(t);
num2 -= *t; num1 += *t;
d1.insert(*t);
}
while(d1.size() > d2.size()){
t = d1.end(); t--;
d1.erase(t); d2.insert(*t);
num1 -= *t; num2 += *t;
}
mid = *d2.begin();
if (i >= k){
long long temp = 0;
temp += 1ll*(d1.size()*mid) - num1;
temp += num2 - 1ll*(d2.size()*mid);
ans = min(ans,temp);
}
}
}
if (n == 1) ans = 0;
printf("%lld\n",ans);
return 0;
}
主席树搞一下。
主席树找到中位数。
并且求出来中位数左边的数的个数,中位数左边的数 之和。
找出来中位数右边的数的个数,中位数右边的数之和。
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
struct node
{
int l,r,num;
long long sum;
}f[N*40];
long long lnum,lsum,rnum,rsum,ans;
int n,m,k,a[N],b[N],cnt,rt[N*40];
void update(int &now, int l, int r, int c){
f[++cnt] = f[now];
f[now = cnt].num++;
f[now].sum += b[c];
if (l + 1 == r) return;
int mid = (l + r) >> 1;
if (c < mid) update(f[now].l,l,mid,c);
if (c >= mid) update(f[now].r,mid,r,c);
}
int query(int pre, int now, int l, int r, int c){
if (l + 1 == r) return l;
int d = f[f[now].l].num - f[f[pre].l].num;
int mid = (l + r) >> 1;
if (d >= c){
lsum -= (f[f[now].r].sum - f[f[pre].r].sum);
lnum -= (f[f[now].r].num - f[f[pre].r].num);
return query(f[pre].l,f[now].l,l,mid,c);
} else{
rsum -= (f[f[now].l].sum - f[f[pre].l].sum);
rnum -= (f[f[now].l].num - f[f[pre].l].num);
return query(f[pre].r,f[now].r,mid,r,c-d);
}
}
int main(){
scanf("%d%d",&n,&k);
for (int i = 1; i <= n; ++i){
scanf("%d",&a[i]);
b[i] = a[i];
}
sort(b+1,b+n+1);
b[0] = unique(b+1,b+n+1) - b - 1;
rt[0] = 0;
for (int i = 1; i <= n; ++i){
int t = lower_bound(b+1,b+b[0]+1,a[i]) - b;
rt[i] = rt[i-1];
update(rt[i],1,b[0]+1,t);
}
int temp; ans = 0x7f7f7f7f7f7f7f;
for (int i = k; i <= n; ++i){
lsum = rsum = f[rt[i]].sum - f[rt[i-k]].sum;
lnum = rnum = f[rt[i]].num - f[rt[i-k]].num;
temp = query(rt[i-k],rt[i],1,b[0]+1,(k+1)/2);
temp = b[temp];
ans = min(ans,1ll*(lnum-rnum)*temp-lsum+rsum);
}
printf("%lld\n",ans);
return 0;
}