bzoj 1112: [POI2008]砖块Klo 主席树,or set 搞一下。就是中位数。

Description

N柱砖,希望有连续K柱的高度是一样的. 你可以选择以下两个动作 1:从某柱砖的顶端拿一块砖出来,丢掉不要了. 2:从仓库中拿出一块砖,放到另一柱.仓库无限大. 现在希望用最小次数的动作完成任务.

Input

第一行给出N,K. (1 ≤ k ≤ n ≤ 100000), 下面N行,每行代表这柱砖的高度.0 ≤ hi ≤ 1000000

Output

最小的动作次数

Sample Input

5 3
3
9
2
3
1

Sample Output

2

 

思路:

只要找到中位数就可以了。 可以用两个 set 维护一下。用两个set 找到中位数,并且记录两个set 的 数字和。然后作差就可以了。

 

还可以用主席树搞一下。

 

 

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
int a[N],mid,n,m,k;
long long num1,num2,ans = 0x7f7f7f7f7f7f7f;
multiset <int> d1,d2;
multiset <int>::iterator t;
int main(){
	printf("%lld\n",ans);
	scanf("%d%d",&n,&k);
	for (int i = 1; i <= n; ++i)
		scanf("%d",&a[i]);

	d2.insert(a[1]); mid = a[1]; num2 += a[1];
	for (int i = 2; i <= n; ++i){
		if (i > k){
			if (a[i-k] >= mid) {
				d2.erase(d2.find(a[i-k])); num2 -= a[i-k];
			} else{
				d1.erase(d1.find(a[i-k])); num1 -= a[i-k];
			}

		} 

		{
			if (a[i] >= mid) {
				d2.insert(a[i]); num2 += a[i];
			} else {
				d1.insert(a[i]); num1 += a[i];
			}

			while(d1.size() + 1 < d2.size()){
				t = d2.begin();
				d2.erase(t); 
				num2 -= *t; num1 += *t;
				d1.insert(*t);
			}
			while(d1.size() > d2.size()){
				t = d1.end(); t--;
				d1.erase(t); d2.insert(*t);
				num1 -= *t; num2 += *t;
			}
			mid = *d2.begin();
			if (i >= k){
				long long temp = 0;
				temp += 1ll*(d1.size()*mid) - num1;
				temp += num2 - 1ll*(d2.size()*mid);
				ans = min(ans,temp);
			}
		}
	}
	if (n == 1) ans = 0;
	printf("%lld\n",ans);
	return 0;
}

 主席树搞一下。 

主席树找到中位数。 

并且求出来中位数左边的数的个数,中位数左边的数 之和。

找出来中位数右边的数的个数,中位数右边的数之和。 

 

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
struct node
{
    int l,r,num;
    long long sum; 
}f[N*40];
long long lnum,lsum,rnum,rsum,ans;
int n,m,k,a[N],b[N],cnt,rt[N*40];

void update(int &now, int l, int r, int c){
    f[++cnt] = f[now];
    f[now = cnt].num++;
    f[now].sum += b[c];
    if (l + 1 == r) return;
    int mid = (l + r) >> 1;
    if (c < mid) update(f[now].l,l,mid,c);
    if (c >= mid) update(f[now].r,mid,r,c);
}

int query(int pre, int now, int l, int r, int c){
    if (l + 1 == r) return l;
    int d = f[f[now].l].num - f[f[pre].l].num;
    int mid = (l + r) >> 1;
    if (d >= c){
        lsum -= (f[f[now].r].sum - f[f[pre].r].sum);
        lnum -= (f[f[now].r].num - f[f[pre].r].num);
        return query(f[pre].l,f[now].l,l,mid,c);
    } else{
        rsum -= (f[f[now].l].sum - f[f[pre].l].sum);
        rnum -= (f[f[now].l].num - f[f[pre].l].num);
        return query(f[pre].r,f[now].r,mid,r,c-d);
    }
}

int main(){
    scanf("%d%d",&n,&k);
    for (int i = 1; i <= n; ++i){
        scanf("%d",&a[i]);
        b[i] = a[i];
    }
    sort(b+1,b+n+1);
    b[0] = unique(b+1,b+n+1) - b - 1;

    rt[0] = 0;
    for (int i = 1; i <= n; ++i){
        int t = lower_bound(b+1,b+b[0]+1,a[i]) - b;
        rt[i] = rt[i-1];
        update(rt[i],1,b[0]+1,t);
    }

    int temp; ans = 0x7f7f7f7f7f7f7f;
    for (int i = k; i <= n; ++i){
        lsum = rsum = f[rt[i]].sum - f[rt[i-k]].sum;
        lnum = rnum = f[rt[i]].num - f[rt[i-k]].num;
        temp = query(rt[i-k],rt[i],1,b[0]+1,(k+1)/2);
        temp = b[temp];
        ans = min(ans,1ll*(lnum-rnum)*temp-lsum+rsum);
    }

    printf("%lld\n",ans);


    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值