题目描述
一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},
1 = 1
2 = 1+1
3 = 1+1+1
4 = 4
5 = 4+1
6 = 4+1+1
7 = 4+1+1+1
8无法表示为集合S的子集的和,故集合S的神秘数为8。
现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间l,r,求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。
思路:
我们可以考虑一个区间,它可以表示的值为 [1,ans-1] ,神秘数就是 ans, 那么,我们再加入一个数字 w,
如果 w <= ans, 那么这个区间可以表示的值变为 [1,ans+w-1] 神秘数就是 ans + w
如果 w > ans ,那么这个区间表示的值就不会连续, 神秘数还是 ans,
我们换个思路考虑一下,现在有一个区间,先假设它的神秘数为 ans = 1, 然后我们统计一下这个区间内小于等于 ans 的数之和 w,
如果 w >= ans, 那么 ans = w + 1, 组成 w 的这些数都是小于等于 ans 的,满足上面的第一个条件,区间就可以边长.
如果 w < ans 那么 ans 不变.
然后如何统计一个区间内 小于等于 ans 的数之和呢? 那就是用到主席树了.
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+1000;
const int M = N*40;
int ls[M],rs[M],val[M],rt[N],cnt;
int a[N],n,m,num;
void modify(int &now, int l, int r, int k){
val[++cnt] = val[now] + k; ls[cnt] = ls[now]; rs[cnt] = rs[now];
now = cnt;
if (l + 1 == r) return;
int mid = (l + r) >> 1;
if (k < mid) modify(ls[now],l,mid,k);
if (k >= mid) modify(rs[now],mid,r,k);
}
int Query(int rt1, int rt2, int l, int r, int k){
int ans = 0;
if (k >= r-1){
return val[rt2] - val[rt1];
}
int mid = (l + r) >> 1;
if (1 < mid) ans += Query(ls[rt1],ls[rt2],l,mid,k);
if (k >= mid) ans += Query(rs[rt1],rs[rt2],mid,r,k);
return ans;
}
int main(){
int x,y;
scanf("%d",&n);
for (int i = 1; i <= n; ++i)
scanf("%d",&a[i]),num+=a[i];
for (int i = 1; i <= n; ++i){
rt[i] = rt[i-1];
modify(rt[i],1,num + 1,a[i]);
}
scanf("%d",&m);
for (int i = 0; i < m; ++i){
scanf("%d%d",&x,&y);
int ans = 1;
while(1){
int w = Query(rt[x-1],rt[y],1,num+1,ans);
if (w >= ans) ans = w + 1; else break;
}
printf("%d\n",ans);
}
return 0;
}
/*
5
1 2 4 9 10
5
1 1
1 2
1 3
1 4
1 5
*/