Luogu P4587 [FJOI2016]神秘数 (主席树)

题目描述

一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},

1 = 1

2 = 1+1

3 = 1+1+1

4 = 4

5 = 4+1

6 = 4+1+1

7 = 4+1+1+1

8无法表示为集合S的子集的和,故集合S的神秘数为8。

现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间l,r,求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。

 

思路:

我们可以考虑一个区间,它可以表示的值为 [1,ans-1] ,神秘数就是 ans,    那么,我们再加入一个数字 w, 

如果 w <= ans, 那么这个区间可以表示的值变为  [1,ans+w-1]   神秘数就是  ans + w

如果 w > ans ,那么这个区间表示的值就不会连续,  神秘数还是 ans,

 

我们换个思路考虑一下,现在有一个区间,先假设它的神秘数为  ans = 1, 然后我们统计一下这个区间内小于等于 ans 的数之和 w,

如果  w >= ans, 那么 ans = w + 1, 组成 w 的这些数都是小于等于 ans 的,满足上面的第一个条件,区间就可以边长.

如果 w < ans  那么 ans 不变.

然后如何统计一个区间内 小于等于 ans 的数之和呢? 那就是用到主席树了.

 

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+1000;
const int M = N*40;
int ls[M],rs[M],val[M],rt[N],cnt;
int a[N],n,m,num;

void modify(int &now, int l, int r, int k){
    val[++cnt] = val[now] + k; ls[cnt] = ls[now]; rs[cnt] = rs[now];
    now = cnt;
    if (l + 1 == r) return;
    int mid = (l + r) >> 1;
    if (k < mid) modify(ls[now],l,mid,k);
    if (k >= mid) modify(rs[now],mid,r,k);
}

int Query(int rt1, int rt2, int l, int r, int k){
    int ans = 0;
    if (k >= r-1){
        return val[rt2] - val[rt1];
    }
    int mid = (l + r) >> 1;
    if (1 < mid) ans += Query(ls[rt1],ls[rt2],l,mid,k);
    if (k >= mid) ans += Query(rs[rt1],rs[rt2],mid,r,k);
    return ans;
}
int main(){
    int x,y;
    scanf("%d",&n);
    for (int i = 1; i <= n; ++i)
        scanf("%d",&a[i]),num+=a[i];
    for (int i = 1; i <= n; ++i){
        rt[i] = rt[i-1];
        modify(rt[i],1,num + 1,a[i]);
    }
    scanf("%d",&m);
    for (int i = 0; i < m; ++i){
        scanf("%d%d",&x,&y);
        int ans = 1;
        while(1){
            int w = Query(rt[x-1],rt[y],1,num+1,ans);
            if (w >= ans) ans = w + 1; else break;
        }
        printf("%d\n",ans);
    }

    return 0;
}
/*
5
1 2 4 9 10
5
1 1
1 2
1 3
1 4
1 5

*/

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值